Characterization of Ferroplasma acidiphilum growing in pure and mixed culture with Leptospirillum ferriphilum.

Biotechnol Prog

Centre for Biotechnology and Bioengineering, CeBiB, Dept. of Chemical Engineering and Biotechnology, University of Chile, Beauchef 851, Santiago, Chile.

Published: November 2016

AI Article Synopsis

Article Abstract

Biomining is defined as biotechnology for metal recovery from minerals, and is promoted by the concerted effort of a consortium of acidophile prokaryotes, comprised of members of the Bacteria and Archaea domains. Ferroplasma acidiphilum and Leptospirillum ferriphilum are the dominant species in extremely acid environments and have great use in bioleaching applications; however, the role of each species in this consortia is still a subject of research. The hypothesis of this work is that F. acidiphilum uses the organic matter secreted by L. ferriphilum for growth, maintaining low levels of organic compounds in the culture medium, preventing their toxic effects on L. ferriphilum. To test this hypothesis, a characterization of Ferroplasma acidiphilum strain BRL-115 was made with the objective of determining its optimal growth conditions. Subsequently, under the optimal conditions, L. ferriphilum and F. acidiphilum were tested growing in each other's supernatant, in order to define if there was exchange of metabolites between the species. With these results, a mixed culture in batch cyclic operation was performed to obtain main specific growth rates, which were used to evaluate a mixed metabolic model previously developed by our group. It was observed that F. acidiphilum, strain BRL-115 is a chemomixotrophic organism, and its growth is maximized with yeast extract at a concentration of 0.04% wt/vol. From the experiments of L. ferriphilum growing on F. acidiphilum supernatant and vice versa, it was observed that in both cases cell growth is favorably affected by the presence of the filtered medium of the other microorganism, proving a synergistic interaction between these species. Specific growth rates were obtained in cyclic batch operation of the mixed culture and were used as input data for a Flux Balance Analysis of the mixed metabolic model, obtaining a reasonable behavior of the metabolic fluxes and the system as a whole, therefore consolidating the model previously developed. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1390-1396, 2016.

Download full-text PDF

Source
http://dx.doi.org/10.1002/btpr.2340DOI Listing

Publication Analysis

Top Keywords

ferroplasma acidiphilum
12
mixed culture
12
characterization ferroplasma
8
leptospirillum ferriphilum
8
acidiphilum strain
8
strain brl-115
8
specific growth
8
growth rates
8
mixed metabolic
8
metabolic model
8

Similar Publications

The acidophilic archaeon exhibits remarkable adaptations to life in highly acidic environments. Nevertheless, the investigation of its molecular biology is challenging because of the slow growth of the organism, low biomass yield, and limitations of standard growth measurement techniques caused by iron oxidation.•A novel two-step turbidimetric growth measurement (2TGM) method was developed to address the shortcomings associated with iron precipitation in culture media.

View Article and Find Full Text PDF
Article Synopsis
  • The study aims to establish an enzyme-driven bioleaching pathway for extracting copper, focusing on the Type-1 copper protein rusticyanin from Acidithiobacillus ferrooxidans (AfR).
  • Comparisons were made with an ancestral form of rusticyanin (N0) and an archaeal version from Ferroplasma acidiphilum (FaR), revealing that while N0 and FaR have similar redox potentials to AfR, their electron transport rates are significantly slower.
  • The findings indicate that AfR has evolved for efficient energy conversion during iron oxidation, and newly observed behavior of AfR involves a partially unfolded state, which could affect its stability and has implications for optimizing it for bioleaching applications.
View Article and Find Full Text PDF

Bioleaching processes and acid mine drainage (AMD) generation are mainly driven by aerobic microbial iron(II) and inorganic sulfur/compound oxidation. Dissimilatory iron(III) reduction coupled to sulfur/compound oxidation (DIRSO) by acidophilic microorganisms has been described for anaerobic cultures, but iron reduction was observed under aerobic conditions as well. Aim of this study was to explore reaction rates and mechanisms of this process.

View Article and Find Full Text PDF

The adhesion of microorganisms to surfaces and the affecting factors is important in biomining pretreatment. In this research, the novelty is focused on studying the monosaccharide's impact on the adaptability and adhesivity of Ferroplasma acidiphilum for oxidization of sulfide-bearing ore containing pyrite harboring 98 % of gold in its crystal lattice. d-sucrose increased EPS production with the highest amount of pyrite dissolution (69 %) as compared to the other types of monosaccharides (d-galactose and d-fructose).

View Article and Find Full Text PDF

The development of cost-effective environmentally friendly technologies is of current importance for the intensification of metal recovery. Here, we propose a new direction in the use of a two-step process for the treatment of complex sulfidic ores. In the first step, ore flotation allows the obtainment of a bulk copper-zinc concentrate and low-toxicity waste.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!