Proteome-wide analysis of lysine acetylation in adult Schistosoma japonicum worm.

J Proteomics

Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai 200241, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province 225009, PR China. Electronic address:

Published: October 2016

Unlabelled: Lysine acetylation, a ubiquitous and conserved posttranslational modification, has recently been shown to participate in many diverse non-chromatin-associated biological processes in prokaryotes and eukaryotes. However, the full extent and functional significance of acetylation in Schistosoma japonicum is still unknown. To investigate the nature, extent, and biological functions of lysine acetylation in schistosomes, immunoaffinity-based acetyl-lysine peptide enrichment, integrated with mass spectrometry, was used to comprehensively characterize the lysine-acetylated proteins in this parasite. In total, 1109 acetylated proteins and 2393 acetylation sites in S. japonicum were identified, representing the largest acetylome yet reported in a parasite. In a bioinformatic analysis showed that these acetylated proteins were mainly enriched in the biological process categories of metabolism, gene expression, translation, and transport. The classification according to molecular function revealed that the largest class involved the catalytic activity of different enzymes, including oxidoreductase, transferase, and pyrophosphatase activities. Most of the acetylated proteins in the cellular component category occurred in the cytoplasm, membrane, cytoskeleton, and nucleus. These data demonstrate the generality of lysine acetylation and provide the first global survey of acetylation in schistosomes. Our findings are an exciting starting point for the further exploration of the functions of acetylation in the biology of this parasite.

Significance: Schistosomiasis is one of the world's most prevalent and neglected tropical parasitic zoonotic diseases, and it causes almost 200,000 deaths annually. To control and eradicate schistosomiasis, effective vaccines are urgently required, and drug targets that are essential for schistosome survival must be identified in fundamental studies of schistosome biology. Posttranslational modifications are complex, fundamental, and important mechanisms that regulate the physiological functions of organisms. Lysine acetylation, a ubiquitous and conserved posttranslational modification, has recently been shown to participate in many diverse non-chromatin-associated biological processes in prokaryotes and eukaryotes. However, the full extent and functional significance of acetylation in Schistosoma japonicum is still unknown. To investigate the nature, extent, and biological functions of lysine acetylation in S. japonicum, we employ immunoaffinity-based acetyl-lysine peptide enrichment, integrated with mass spectrometry to comprehensively characterize the lysine-acetylated proteins in this parasite. The results of our data demonstrate the generality of lysine acetylation and provide the first global survey of acetylation in schistosomes. Our findings are an exciting starting point for the further exploration of the functions of acetylation in the biology of this parasite. Meanwhile, identifying the mechanisms and proteins targeted by acetylation may also provide a promising avenue for specific drug design and the development of sophisticated therapeutic strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jprot.2016.08.008DOI Listing

Publication Analysis

Top Keywords

lysine acetylation
28
acetylation
15
schistosoma japonicum
12
acetylation schistosomes
12
acetylated proteins
12
acetylation provide
12
acetylation ubiquitous
8
ubiquitous conserved
8
conserved posttranslational
8
posttranslational modification
8

Similar Publications

Nucleosomal asymmetry shapes histone mark binding and promotes poising at bivalent domains.

Mol Cell

December 2024

Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK; Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK. Electronic address:

Promoters of developmental genes in embryonic stem cells (ESCs) are marked by histone H3 lysine 4 trimethylation (H3K4me3) and H3K27me3 in an asymmetric nucleosomal conformation, with each sister histone H3 carrying only one of the two marks. These bivalent domains are thought to poise genes for timely activation upon differentiation. Here, we show that asymmetric bivalent nucleosomes recruit repressive H3K27me3 binders but fail to enrich activating H3K4me3 binders, thereby promoting a poised state.

View Article and Find Full Text PDF

Acetylation of proximal cysteine-lysine pairs by alcohol metabolism.

Redox Biol

December 2024

Graduate Program in Toxicology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA. Electronic address:

Alcohol consumption induces hepatocyte damage through complex processes involving oxidative stress and disrupted metabolism. These factors alter proteomic and epigenetic marks, including alcohol-induced protein acetylation, which is a key post-translational modification (PTM) that regulates hepatic metabolism and is associated with the pathogenesis of alcohol-associated liver disease (ALD). Recent evidence suggests lysine acetylation occurs when a proximal cysteine residue is within ∼15 Å of a lysine residue, referred to as a cysteine-lysine (Cys-Lys) pair.

View Article and Find Full Text PDF

Transcriptomic and Metabolomic Analysis Reveals Multifaceted Impact of Gcn5 Knockdown in Development.

Metabolites

December 2024

The Laboratory of Heart Development Research, College of Life Science, Hunan Normal University, Changsha 410081, China.

General control nonderepressible 5 (Gcn5) is a lysine acetyltransferase (KAT) that is evolutionarily conserved across eukaryotes, with two homologs (Kat2a and Kat2b) identified in humans and one (Gcn5) in . Gcn5 contains a P300/CBP-associated factor (PCAF) domain, a Gcn5-N-acetyltransferase (GNAT) domain, and a Bromodomain, allowing it to regulate gene expression through the acetylation of both histone and non-histone proteins. In , Gcn5 is crucial for embryonic development, with maternal Gcn5 supporting early development.

View Article and Find Full Text PDF

D-peptide hydrogels as a long-acting multipurpose drug delivery platform for combined contraception and HIV prevention.

J Control Release

December 2024

School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, Northern Ireland BT9 7BL, United Kingdom. Electronic address:

Article Synopsis
  • New multipurpose prevention technologies for women prioritize reducing HIV risks and preventing unwanted pregnancies, promoting greater sexual health choices.
  • A novel long-acting injectable platform combines the HIV drug MIV-150 and the contraceptive etonogestrel using a specially designed D-peptide that forms a drug-releasing hydrogel after injection.
  • The technology shows promising biostability, low toxicity, and sustained delivery of both drugs in animal models for nearly 50 days, indicating its potential for effective long-term use.
View Article and Find Full Text PDF

Curcumin prevents neurodegeneration by blocking HDAC6-NLRP3 pathway-dependent neuroinflammation in Parkinson's disease.

Int Immunopharmacol

December 2024

Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, Guangdong, PR China. Electronic address:

Curcumin is a hydrophobic polyphenolic compound with potent anti-inflammatory properties. However, whether it can achieve therapeutic effects by alleviating neuroinflammation in patients with Parkinson's disease (PD) and its potential mechanism are still unknown. This study explored the effects of curcumin on neuroinflammation in dopaminergic neurons and deciphered its direct target in the histone deacetylase 6 (HDAC6)-Nucleotide-binding domain, leucine-rich repeat, and pyrin domain-containing protein 3 (NLRP3) pathway, revealing the potential role of curcumin in the treatment of Parkinson's disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!