Pilot-scale study of powdered activated carbon recirculation for micropollutant removal.

Water Sci Technol

Chair of Water Quality Control, Technische Universität Berlin, KF4, Str. des 17. Juni 135, Berlin D-10623, Germany E-mail:

Published: January 2017

Adsorption onto powdered activated carbon (PAC) is a promising technique for the removal of organic micropollutants (OMPs) from treated wastewater. To enhance the adsorption efficiency, PAC is recycled back into the adsorption stage. This technique was examined in pilot scale in comparison to a reference without recirculation. Coagulation with Fe(3+) was carried out simultaneously to adsorption. Extensive OMP measurements showed that recirculation significantly increased OMP eliminations. Thus, significant PAC savings were feasible. The PAC concentration in the contact reactor proved to be an important operating parameter that can be surrogated by the easily measurable total suspended solids (TSS) concentration. OMP eliminations increased with increasing TSS concentrations. At 20 mg PAC L(-1) and 2.8 g TSS L(-1) in the contact reactor, well-adsorbable carbamazepine was eliminated by 97%, moderately adsorbable diclofenac was eliminated by 92% and poorly-adsorbable acesulfame was eliminated by 54% in comparison to 49%, 35% and 18%, respectively, without recirculation. The recirculation system represents an efficient technique, as the PAC's adsorption capacity is practically completely used. Small PAC dosages yield high OMP eliminations. Poorly-adsorbable gabapentin was eliminated to an unexpectedly high degree. A laboratory-scale biomass inhibition study showed that aerobic biodegradation removed gabapentin in addition to adsorption.

Download full-text PDF

Source
http://dx.doi.org/10.2166/wst.2016.273DOI Listing

Publication Analysis

Top Keywords

omp eliminations
12
powdered activated
8
activated carbon
8
contact reactor
8
adsorption
6
pac
6
recirculation
5
pilot-scale study
4
study powdered
4
carbon recirculation
4

Similar Publications

1. is an opportunist pathogen of animals, including food-producing ones and humans. Chickens may be a notable source of pathogenic and antimicrobial resistant for transmission to humans.

View Article and Find Full Text PDF

Design a novel of Brucellosis preventive vaccine based on IgV_CTLA-4 and multiple epitopes via immunoinformatics approach.

Microb Pathog

October 2024

State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China; Department of Clinical Laboratory, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China. Electronic address:

Brucellosis is a zoonotic disease caused by Brucella, which is difficult to eliminate by conventional drugs. Therefore, a novel multi-epitope vaccine (MEV) was designed to prevent human Brucella infection. Based on the method of "reverse vaccinology", cytotoxic T lymphocyte epitopes (CTLEs), helper T lymphocyte epitopes (HTLEs), linear B-cell epitopes (LBEs) and conformational B-cell epitopes (CBEs) of four Brucella proteins (VirB9, VirB10, Omp 19 and Omp 25) were obtained.

View Article and Find Full Text PDF

Sustainability and life-cycle concerns about the conventional activated sludge (CAS) process for wastewater treatment have been driving the development of energy-efficient, greener alternatives. Feasibility of an algal-based wastewater treatment (A-WWT) system has been demonstrated recently as a possible alternative, capable of simultaneous nutrient and energy recovery. This study compared capabilities of the A-WWT and CAS systems in removing organic micropollutants (OMP).

View Article and Find Full Text PDF

Distinct Efficacies of Interlayers in Tailoring Polyamide Nanofiltration Membrane Performance for Organic Micropollutant Removal: Dependent on Substrate Characteristics.

Environ Sci Technol

August 2024

State Key Laboratory of Pollution Control and Resources Reuse, Tongji Advanced Membrane Technology Center, Tongji University, Shanghai 200092, China.

Interlayered thin-film nanocomposite (TFN) membranes have shown the potential to boost nanofiltration performance for water treatment applications including the removal of organic micropollutants (OMPs). However, the effects of substrates have been overlooked when exploiting and evaluating the efficacy of certain kinds of interlayers in tailoring membrane performance. Herein, a series of TFN membranes were synthesized on different porous substrates with identical interlayers of metal-organic framework nanosheets.

View Article and Find Full Text PDF

Spillage from oil refineries, pipelines, and service stations consistently leads to soil, food and groundwater contamination. Bacterial-assisted phytoremediation is a non-invasive and sustainable solution to eliminate or decrease the concentration of xenobiotic contaminants in the environment. In the present study, a protected area interested by a fuel discharge was considered to assess a bioremediation intervention.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!