The intrinsic capacity to mineralize the groundwater pollutant 2,6-dichlorobenzamide (BAM) and its metabolite 2,6-dichlorobenzoic acid (2,6-DCBA) was evaluated in samples from sand filters (SFs) of drinking water treatment plants (DWTPs). Whereas BAM mineralization occurred rarely and only in SFs exposed to BAM, 2,6-DCBA mineralization was common in SFs, including those treating uncontaminated water. Nevertheless, SFs treating BAM contaminated water showed the highest 2,6-DCBA mineralization rates. For comparison, 2,6-DCBA and BAM mineralization were determined in various topsoil samples. As in SF samples, BAM mineralization was rare, whereas 2,6-DCBA mineralization capacity appeared widespread, with high mineralization rates found especially in forest soils. Multivariate analysis showed that in both SF and soil samples, high 2,6-DCBA mineralization correlated with high organic carbon content. Adding a 2,6-DCBA degradation deficient mutant of the BAM mineralizing Aminobacter sp. MSH1 confirmed that 2,6-DCBA produced from BAM is rapidly mineralized by the endogenous microbial community in SFs showing intrinsic 2,6-DCBA mineralization. This study demonstrates that (i) 2,6-DCBA mineralization is widely established in SFs of DWTPs, allowing the mineralization of 2,6-DCBA produced during BAM degradation and (ii) the first metabolic step in BAM mineralization is rare in microbial communities, rather than its further degradation beyond 2,6-DCBA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.6b01352 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!