We report a low-cost compact diffuse speckle contrast flowmeter (DSCF) consisting of a small laser diode and a bare charge-coupled-device (CCD) chip, which can be used for contact measurements of blood flow variations in relatively deep tissues (up to ∼ 8  mm). Measurements of large flow variations by the contact DSCF probe are compared to a noncontact CCD-based diffuse speckle contrast spectroscopy and a standard contact diffuse correlation spectroscopy in tissue phantoms and a human forearm. Bland–Altman analysis shows no significant bias with good limits of agreement among these measurements: 96.5%±2.2% (94.4% to 100.0%) in phantom experiments and 92.8% in the forearm test. The relatively lower limit of agreement observed in the in vivo measurements (92.8%) is likely due to heterogeneous reactive responses of blood flow in different regions/volumes of the forearm tissues measured by different probes. The low-cost compact DSCF device holds great potential to be broadly used for continuous and longitudinal monitoring of blood flow alterations in ischemic/hypoxic tissues, which are usually associated with various vascular diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4975738PMC
http://dx.doi.org/10.1117/1.JBO.21.8.080501DOI Listing

Publication Analysis

Top Keywords

low-cost compact
12
diffuse speckle
12
speckle contrast
12
blood flow
12
compact diffuse
8
contrast flowmeter
8
small laser
8
laser diode
8
diode bare
8
bare charge-coupled-device
8

Similar Publications

Direct ink writing is a 3D printing method that is compatible with a wide range of structural, elastomeric, electronic, and living materials, and it continues to expand its uses into physics, engineering, and biology laboratories. However, the large footprint, closed hardware and software ecosystems, and expense of commercial systems often hamper widespread adoption. This work introduces a compact, low-cost, multimaterial, and high-throughput direct ink writing 3D printer platform with detailed assembly files and instructions provided freely online.

View Article and Find Full Text PDF

Bioinspired origami-based soft prosthetic knees.

Nat Commun

December 2024

Department of Advanced Manufacturing and Robotics, College of Engineering, Peking University, Beijing, China.

Prosthetic knees represent a prevalent solution for above-knee amputation rehabilitation. However, satisfying the ambulation requirements of users while achieving their comfort needs in terms of lightweight, bionic, shock-absorbing, and user-centric, remains out of reach. Soft materials seem to provide alternative solutions as their properties are conducive to the comfort aspect.

View Article and Find Full Text PDF

The present study demonstrates the synthesis of compact ZnO layers using CdS sensitized on ZnO as a photoanode with copper sulfide (CuS) and carbon as a counter electrode (CE). In this study, a compact ZnO layer was fabricated using the simple and low-cost successive ionic layer adsorption and reaction (SILAR) method, and CuS CE films were synthesized using the chemical bath deposition method. Various characterizations, such as X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), confirmed the formation of ZnO and CdS sensitizations on the ZnO .

View Article and Find Full Text PDF

Hyperspectral Metachip-Based 3D Spatial Map for Cancer Cell Screening and Quantification.

Adv Mater

December 2024

Advanced Microscopy and Instrumentation Research Center, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, 150080, China.

In this paper, compact terahertz (THz) metachips for hyperspectral screening and quantitative evaluation of human cancer cells is reported. This pixelated resonant metachips feature the resonance channel from 1 and 3 THz frequency with a record-high quality factor (up to 230). Through the interactions of various cancer cells of different concentrations, high-dimensional spectral signatures are obtained, which are further transformed into a spatial map for labelling and quantification purposes.

View Article and Find Full Text PDF

Computer Vision-Based Gait Recognition on the Edge: A Survey on Feature Representations, Models, and Architectures.

J Imaging

December 2024

Department of Mechatronics Engineering, Universidad Católica Boliviana "San Pablo", La Paz 4807, Bolivia.

Computer vision-based gait recognition (CVGR) is a technology that has gained considerable attention in recent years due to its non-invasive, unobtrusive, and difficult-to-conceal nature. Beyond its applications in biometrics, CVGR holds significant potential for healthcare and human-computer interaction. Current CVGR systems often transmit collected data to a cloud server for machine learning-based gait pattern recognition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!