The manipulation of distortions in perovskite structures is critical to tailoring the properties of these materials for a variety of applications. Here we demonstrate a violation of established octahedral tilt rules in the double perovskite analogue (NH4)2SrFe(CN)6·2H2O. The forbidden tilt pattern we observe arises through coupling to hydration-driven Jahn-Teller-like distortions of the Sr coordination environment. Access to novel distortion mechanisms and the ability to switch these distortions on and off through chemical modification fundamentally expands the toolbox of techniques available for engineering symmetry-breaking processes in solid materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.6b06785 | DOI Listing |
J Am Chem Soc
January 2025
Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
High-performance and cost-effective hole-collecting materials (HCMs) are indispensable for commercially viable perovskite solar cells (PSCs). Here, we report an anchorable HCM composed of a triazatruxene core connected with three alkyl carboxylic acid groups (). In contrast to the phosphonic acid-containing tripodal analog (), molecules can form a hydrophilic monolayer on a transparent conducting oxide surface, which is beneficial for subsequent perovskite film deposition in the traditional layer-by-layer fabrication process.
View Article and Find Full Text PDFActa Crystallogr E Crystallogr Commun
January 2025
Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska St. 64, Kyiv 01601, Ukraine.
The title compound is a germanium-based hybrid metal halide that represents a less-toxic alternative to more popular lead-based analogues in optoelectronic applications. {(2-ICHNH)[GeI]} is composed of infinite inorganic layers that are formed by [GeI] octa-hedra connected in a corner-sharing manner with four equatorial I atoms. The organic (2-ICHNH) cations inter-leave the inorganic layers.
View Article and Find Full Text PDFInorg Chem
January 2025
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
CaCuFeReO and LaCuFeReO quadruple perovskite oxides are well known for their high ferrimagnetic Curie temperatures and half-metallic electronic structures. By A-site chemical substitution with lower valence state Na, an isostructural compound NaCuFeReO with both A- and B-site ordered quadruple perovskite structures in -3 symmetry was prepared using high-pressure and high-temperature techniques. The X-ray absorption study demonstrates the valence states to be Cu, Fe, and Re.
View Article and Find Full Text PDFJ Comput Chem
January 2025
Department of Physics, Sakarya University, Sakarya, Turkey.
We investigate the comprehensive analysis's structural, electronic, optical, and elastic properties of Cs₂NaScX₆ (X = Cl, Br) double perovskites using density functional theory (DFT) implemented by the WIEN2k code. The results show that both compounds are in cubic phases. The calculated tolerance factors show both are stable compounds.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Department of Chemical Sciences, Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Mumbai 400005, India.
Lower-dimensional organic-inorganic hybrid perovskite materials promise to revolutionize the optoelectronics industry due to the tremendous possibilities of exotic control on excitonic properties driven via quantum confinement. Flexible organic cations acting as spacers and stabilizers enhance electron-phonon couplings, further amplifying the potential for modular light-matter interactions in these materials. Herein we unravel the nature of excitons in a quasi-1D chain of corner-sharing bismuth iodide octahedra with an intrinsic quantum well structure stabilized by a hexyl-diammonium cation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!