Background: Work stress is associated with an increased risk of pre-diabetes, Type 2 diabetes, and inflammation, as well as decreased autonomic nervous system function as measured, for example, via heart rate variability. We investigated the extent to which the association between work stress and glycemic status is mediated by vagally-mediated heart rate variability (vmHRV) and/or inflammation.

Methods: Cross-sectional data from the Mannheim Industrial Cohort Study (MICS) with 9,937 participants were analyzed. The root mean squared successive differences (RMSSD) from long-term heart rate monitoring during work and night time periods was used to index vmHRV. Fasting plasma glucose and glycosylated hemoglobin were assessed to determine glycemic status. High sensitive C-reactive protein levels were observed as a measure of systemic inflammation and the Effort-Reward-Imbalance scale was used to evaluate work stress. Mediation models were adjusted for age, sex, and occupational status, and estimations were bootstrapped (5,000 replications).

Results: Effort-Reward-Imbalance was significantly negatively associated with RMSSD and both glycosylated hemoglobin and fasting plasma glucose during both work and night time periods. Effort-Reward-Imbalance was observed to have a significant direct effect on glycosylated hemoglobin and significant indirect effects, through RMSSD, on both glycemic measures during both time periods. Introducing C-reactive protein as a further mediator to the model did not alter the indirect effects observed. C-reactive protein, as an exclusive mediator, was observed to have smaller direct and indirect effects on the glycemic measures as compared to when Effort-Reward-Imbalance was included in the model.

Conclusions: Our results suggest that the association between work stress and glycemic status is partially mediated through vmHRV independent of systemic inflammation as measured by C-reactive protein. We conclude that work stress may be an additional factor that promotes development of hyperglycemic-metabolic states. If supported by prospective evidence, these results may lead to new approaches for primary prevention of hyperglycemia in the workplace.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4988666PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0160743PLOS

Publication Analysis

Top Keywords

work stress
24
glycemic status
16
c-reactive protein
16
association work
12
stress glycemic
12
heart rate
12
time periods
12
glycosylated hemoglobin
12
indirect effects
12
status partially
8

Similar Publications

Background: Parkinson's disease (PD) is a neurodegenerative disorder characterized by protein aggregates mostly consisting of misfolded alpha-synuclein (αSyn). Progressive degeneration of midbrain dopaminergic neurons (mDANs) and nigrostriatal projections results in severe motor symptoms. While the preferential loss of mDANs has not been fully understood yet, the cell type-specific vulnerability has been linked to a unique intracellular milieu, influenced by dopamine metabolism, high demand for mitochondrial activity, and increased level of oxidative stress (OS).

View Article and Find Full Text PDF

Ubiquitin-specific protease 7 exacerbates acute pancreatitis progression by enhancing ATF4-mediated autophagy.

In Vitro Cell Dev Biol Anim

January 2025

Department of General Surgery, Second Xiangya Hospital, Central South University, No. 139 Renmin Road, Furong District, Changsha, 410011, Hunan Province, P.R. China.

Acute pancreatitis (AP) is a serious inflammatory disease with high incidence rate and mortality. It was confirmed that overactivation of autophagy in acinar cells can increase the risk of AP. Nevertheless, the regulatory mechanism of autophagy in AP is unclear.

View Article and Find Full Text PDF

The abundance of chemical elements in the blood of horses can indicate the physiological balance, health of animal as well as can be taken as an indicator of environmental pollution. The aim of this work was to analyse haematological, biochemical parameters, TOS, FRAP, SOD, Gpx, TAS and their correlations with concentrations of essential and risk elements in blood of horses stabled in two different locations: The National Stud Farm Topoľčianky (n = 11; 11 stallions, consisting of the breeds 6 Lipizzan, 3 Slovak warmblood, 2 Holsteiner) and Experimental Centre at Institute of Animal Husbandry, SUA in Nitra (n = 10; 4 stallions, 5 geldings, 1 mare, 4 stallions, 5 geldings and 1 mare, consisting of the breeds 3 Slovak warmblood, 4 Czech warmblood, 3 Holsteiner). Blood samples were obtained from horses (n = 21) from two localities in the Slovak Republic during May.

View Article and Find Full Text PDF

The link between sleep bruxism and oxidative stress based on a polysomnographic study.

Sci Rep

January 2025

Clinical Department of Diabetology, Hypertension and Internal Diseases, Institute of Internal Diseases, Wroclaw Medical University, 213 Borowska St, Wroclaw, 50-556, Poland.

Oxidative stress is proven to increase cardiovascular risk and to diminish healthy life expectancy. Sleep bruxism (SB) is a prevalent masticatory muscle activity during sleep characterized by heterogeneous etiology and inadequately recognized pathophysiology. Recent theories have proposed a potential association between SB and oxidative stress.

View Article and Find Full Text PDF

Purpose: The primary purpose of the study was to explore the impact of health workers' awareness of artificial intelligence (AI) on their workplace well-being, addressing a critical gap in the literature. By examining this relationship through the lens of the Job demands-resources (JD-R) model, the study aimed to provide insights into how health workers' perceptions of AI integration in their jobs and careers could influence their informal learning behaviour and, consequently, their overall well-being in the workplace. The study's findings could inform strategies for supporting healthcare workers during technological transformations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!