Pou4f2 acts as a key node in the comprehensive and step-wise gene regulatory network (GRN) and regulates the development of retinal ganglion cells (RGCs). Accordingly, deletion of Pou4f2 results in RGC axon defects and apoptosis. To investigate the GRN involved in RGC regeneration, we generated a mouse line with a POU4F2-green fluorescent protein (GFP) fusion protein expressed in RGCs. Co-localization of POU4F2 and GFP in the retina and brain of Pou4f2-GFP/+ heterozygote mice was confirmed using immunofluorescence analysis. Compared with those in wild-type mice, the expression patterns of POU4F2 and POU4F1 and the co-expression patterns of ISL1 and POU4F2 were unaffected in Pou4f2-GFP/GFP homozygote mice. Moreover, the quantification of RGCs showed no significant difference between Pou4f2-GFP/GFP homozygote and wild-type mice. These results demonstrated that the development of RGCs in Pou4f2-GFP/GFP homozygote mice was the same as in wild-type mice. Thus, the present Pou4f2-GFP knock-in mouse line is a useful tool for further studies on the differentiation and regeneration of RGCs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/dvg.22960 | DOI Listing |
Alzheimers Dement
December 2024
Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, U.S.A., Philadelphia, PA, USA.
Background: The vicious cycle between depression and dementia increases the risk of Alzheimer's Disease (AD) pathogenesis and pathology. This study investigates therapeutic effectiveness versus side effects and the underlying mechanisms of intranasal dantrolene nanoparticles (IDNs) to treat depression behavior and memory loss in 5XFAD mice.
Method: 5XFAD and wild-type B6SJLF1/J mice were treated with IDNs (IDN, 5 mg/kg) in Ryanodex formulation for a duration of 12 weeks.
Background: Focused ultrasound (FUS)-induced blood-brain barrier opening (BBBO) is a technique for safely, non-invasively, and transiently opening the blood brain barrier in a targeted area of the brain. Pre-clinical and clinical studies have shown that FUS is capable of decreasing amyloid plaque load and stimulating neurogenesis in Alzheimer's Disease (AD) models, in addition to being safe for use in human patients. However, the effect of FUS-BBBO on neurons has not yet been characterized, despite its crucial role in cognition and regulating brain function.
View Article and Find Full Text PDFBackground: Impaired Aβ clearance plays a key role in the common, late-onset AD. Anti-Aβ immunotherapies are controversial, in part because of high rates of serious side effects including edema, microhemorrhages, and siderosis, highlighting the importance of the development of alternative Aβ clearance strategy. Here, we introduce a bioinspired nanoparticle named MG-PE3 crossing the human blood-brain barrier (BBB) and clearing Aβ with no adverse effect.
View Article and Find Full Text PDFBackground: Convergent evidence indicates that deficits in the endosomal recycling pathway underlies pathogenesis of Alzheimer's disease (AD). SORL1 encodes the retromer-associated receptor SORLA that plays an essential role in recycling of AD-associated cargos such as the amyloid precursor protein and the glutamatergic AMPA receptor. Importantly, loss of function pathogenic SORL1 variants are associated with AD.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Université de Lille, Lille, Hauts-de-France, France.
Background: Tau proteins aggregate in a number of neurodegenerative disorders known as tauopathies. Various studies have highlighted the role of microtubule-binding domains in the intracellular aggregation of Tau protein.
Method: Using a library of synthetic VHHs humanized in collaboration with Hybrigenics, we have developed a number of anti-tau VHHs.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!