Optical properties of electrochromic materials can be controlled by the application of an electric field allowing recent development of new applications such as smart windows technology for indoor climate control and energy conservation. We report the fabrication of a single-walled nanotube (SWNT) thin film based electro-optical modulator controlled by ionic liquid polarization in which the active electrochromic layer is made of a film of semiconducting (SC-) SWNTs and the counter-electrode is composed of a film of metallic (MT-) SWNTs. Optimization of this electro-optical cell allows the operations with an optical modulation depth of 3.7 dB and a response time in the millisecond range, which is thousands of times faster than typical electrolyte-controlled devices. In addition, a dual electro-optical device was built utilizing electro-optically active SC-SWNT films for each electrode that allowed increasing modulation depth of 6.7 dB while preserving the speed of the response.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.6b01564DOI Listing

Publication Analysis

Top Keywords

modulation depth
8
fast electrochromic
4
electrochromic device
4
device based
4
based single-walled
4
single-walled carbon
4
carbon nanotube
4
nanotube thin
4
thin films
4
films optical
4

Similar Publications

Replacing the sluggish anodic water oxidation reaction with the glucose oxidation reaction (GOR) offers an energy-saving strategy to obtain value-added products during the hydrogen production process. However, rational design of the GOR electrocatalyst with an explicit structure-property relationship remains a challenge. In this study, by using cobalt chalcogenides as model catalysts, we performed an in-depth study of the GOR catalytic mechanism of CoS and CoSe nanosheets.

View Article and Find Full Text PDF

In exploring adjuvant therapies for head and neck cancer, hyperthermia (40-45 °C) has shown efficacy in enhancing chemotherapy and radiation, as well as the delivery of liposomal drugs. Current hyperthermia treatments, however, struggle to reach large deep tumors uniformly and non-invasively. This study investigates the feasibility of delivering targeted uniform hyperthermia deep into the tissue using a non-invasive ultrasound spherical random phased array transducer.

View Article and Find Full Text PDF

Extracellular vesicles-a new player in the development of urinary bladder cancer.

Ther Adv Med Oncol

January 2025

Chair of Urology and Andrology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland.

Bladder cancer was the 10th most commonly diagnosed cancer worldwide in 2020. Extracellular vesicles (EVs) are nano-sized membranous structures secreted by all types of cells into the extracellular space. EVs can transport proteins, lipids, or nucleic acids to specific target cells.

View Article and Find Full Text PDF

CCL2, a pivotal cytokine within the chemokine family, functions by binding to its receptor CCR2. The CCL2/CCR2 signaling pathway plays a crucial role in the development of fibrosis across multiple organ systems by modulating the recruitment and activation of immune cells, which in turn influences the progression of fibrotic diseases in the liver, intestines, pancreas, heart, lungs, kidneys, and other organs. This paper introduces the biological functions of CCL2 and CCR2, highlighting their similarities and differences concerning fibrotic disorders in various organ systems, and reviews recent progress in the diagnosis and treatment of clinical fibrotic diseases linked to the CCL2/CCR2 signaling pathway.

View Article and Find Full Text PDF

Unlocking the mechanistic potential of for managing diabetic neuropathy and nephropathy.

J Tradit Complement Med

November 2024

Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.

Diabetes mellitus and its debilitating microvascular complications, including diabetic neuropathy and nephropathy, represent a growing global health burden. Despite advances in conventional therapies, their suboptimal efficacy and adverse effects necessitate exploring complementary and alternative medicine approaches. , a coniferous tree species native to eastern North America, has gained significant attention for its potential therapeutic applications in various disorders, attributed to its rich phytochemical composition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!