CTX-M-15 in combination with aac(6')-Ib-cr is the most prevalent mechanism of resistance both in Escherichia coli and Klebsiella pneumoniae, including K. pneumoniae ST258, in an ICU in Uruguay.

J Glob Antimicrob Resist

Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Alfredo Navarro 3051, CP 11600 Montevideo, Uruguay. Electronic address:

Published: September 2016

The objectives of this study were (i) to determine the extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae (ESBL-EcKp) clones circulating in an intensive care unit (ICU) in Uruguay between August 2010 and July 2011, (ii) to characterise the ESBL and plasmid-mediated quinolone resistance (PMQR) genes of the studied isolates and (iii) to determine the virulotype of the clinical isolates. Clinical and gut-colonising ESBL-EcKp from ICU patients were studied. Bacterial identification and antibiotic susceptibility determination were performed using a VITEK(®)2 system. Detection of ESBL, KPC and PMQR genes was performed by PCR and sequencing. Clonality was assessed by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). In total, 54 ESBL-EcKp isolates (40 K. pneumoniae and 14 E. coli), with or without PMQR genes, were recovered from 30 of 68 inpatients. Forty-seven isolates were CTX-M-15-producers (36 as a single ESBL and 11 together with CTX-M-14). In addition, four isolates produced CTX-M-14, two produced CTX-M-2 and one produced SHV-5. No carbapenemases were detected either in E. coli or K. pneumoniae isolates. Among the ESBL-producing isolates, 42 also harboured PMQR genes: 27 aac(6')-Ib-cr; 14 aac(6')-Ib-cr and qnrB; and a single isolate carrying only qnrB. K. pneumoniae ST258, ST48 and ST16 and E. coli ST10 and ST405 were detected in 46/54 isolates, including 9 clinical isolates. In conclusion, non-KPC-producing K. pneumoniae ST258 harbouring different ESBL and PMQR genes was the main clone disseminated in the ICU. Extensive surveillance measures must be implemented to prevent the emergence of acquired plasmid-encoded blaKPC by ST258 K. pneumoniae.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jgar.2016.02.001DOI Listing

Publication Analysis

Top Keywords

pmqr genes
20
pneumoniae st258
12
isolates
9
escherichia coli
8
coli klebsiella
8
pneumoniae
8
klebsiella pneumoniae
8
icu uruguay
8
clinical isolates
8
coli
5

Similar Publications

Clonal Spread and Genetic Mechanisms Underpinning Ciprofloxacin Resistance in .

Foods

January 2025

MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China.

is a major cause of foodborne illness worldwide, and the emergence of ciprofloxacin-resistant strains poses a significant threat to food safety and public health. This study aimed to investigate the prevalence, spread, and mechanisms of ciprofloxacin resistance in isolates from food and patient samples in Shanghai, China. A total of 1625 isolates were screened, and 34 (2.

View Article and Find Full Text PDF

Detection of O25b-ST131 clone in extended spectrum beta-lactamase-producing E. coli from urinary tract infections in Mexico.

J Infect Dev Ctries

December 2024

Instituto Nacional de Salud Pública (INSP), Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Departamento de Diagnóstico Epidemiológico. Cuernavaca, Morelos, México.

Introduction: Escherichia coli has emerged as an important pathogen in urinary tract infections (UTIs) due to the rapid acquisition of antibiotic resistance genes. This enhances the ability of E. coli to colonize and creates therapeutic challenges within the healthcare system.

View Article and Find Full Text PDF

Deciphering spread of quinolone resistance in mariculture ponds: Cross-species and cross-environment transmission of resistome.

J Hazard Mater

January 2025

SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.

Mariculture is known to harbor antibiotic resistance genes (ARGs), which can be released into marine ecosystems via oceanic farming ponds, posing a public health concern. In this study, metagenomic sequencing was used to decipher the profiles of quinolone-resistant microbiomes and the mechanisms of quinolone resistance in sediment, seawater, and fish gill samples from five mariculture ponds. Residues of both veterinary-specific (enrofloxacin and sarafloxacin) and prohibited quinolones (ofloxacin, ciprofloxacin, pefloxacin, norfloxacin, and lomefloxacin) were detected.

View Article and Find Full Text PDF
Article Synopsis
  • Fluroquinolone resistance in Enterobacteriaceae, including Proteus, poses a significant public health threat, particularly affecting treatments for UTIs and intra-abdominal infections.
  • The study aimed to identify specific quinolone resistance genes in ciprofloxacin-resistant Proteus species within a defined timeframe and location in Bangladesh.
  • Results showed a high prevalence (64.58%) of plasmid-mediated quinolone resistance genes among resistant isolates, indicating a concerning trend that could lead to increased resistance and transmission due to over-prescription of fluoroquinolones.
View Article and Find Full Text PDF

Background And Aims: Emerging evidence suggests that ciprofloxacin and other quinolones can be effectively used as adjuncts to immunosuppressive therapy in managing inflammatory bowel disease (IBD). Clinical isolates of Enterobacterales frequently exhibit quinolone resistance. Additionally, increased IBD severity has been linked to the proliferation of Enterobacterales in the gut.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!