The search for colossal permittivity (CP) materials is imperative because of their potential for promising applications in the areas of device miniaturization and energy storage. High-performance CP materials require high dielectric permittivity, low dielectric loss and relatively weak dependence of frequency- and temperature. In this work, we first investigate the CP behavior of rutile TiO2 ceramics co-doped with niobium and erbium, i.e., (Er0.5Nb0.5)xTi1-xO2. Excellent dielectric properties were observed in the materials, including a CP of up to 10(4)-10(5) and a low dielectric loss (tan δ) down to 0.03, which are lower than that of the previously reported co-doped TiO2 CP materials when measured at 1 kHz. Stabilities of frequency and temperature were also accomplished via doping Er and Nb. Valence states of the elements in the material were analyzed using X-ray photoelectron spectroscopy. The Er induced secondary phases were observed using elemental mapping and energy-dispersive spectrometry. Consequently, this work may provide comprehensive guidance to develop high-performance CP materials for fully solid-state capacitor and energy storage applications.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c6cp02236gDOI Listing

Publication Analysis

Top Keywords

colossal permittivity
8
permittivity materials
8
co-doped tio2
8
energy storage
8
high-performance materials
8
low dielectric
8
dielectric loss
8
materials
6
high-performance colossal
4
materials co-doped
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!