First-line cancer chemotherapy has been prescribed for patients suffered from cancers for many years. However, conventional chemotherapy provides a high parenteral dosage of anticancer drugs over a short period, which may cause serious toxicities and detrimental side effects in healthy tissues. This study aims to develop a new drug delivery system (DDS) composed of double-walled microparticles and an injectable hydrogel for localized dual-agent drug delivery to tumors. The uniform double-walled microparticles loaded with cisplatin (Cis-DDP) and paclitaxel (PTX) were fabricated via coaxial electrohydrodynamic atomization (CEHDA) technique and subsequently were embedded into injectable alginate-branched polyethylenimine. The findings show the uniqueness of CEHDA technique for simply swapping the place of drugs to achieve a parallel or a sequential release profile. This study also presents the simulation of CEHDA technique using computational fluid dynamics (CFD) that will help in the optimization of CEHDA's operating conditions prior to large-scale production of microparticles. The new synthetic hydrogel provides an additional diffusion barrier against Cis-DDP and confines premature release of drugs. In addition, the hydrogel can provide a versatile tool for retaining particles in the tumor resected cavity during the injection after debulking surgery and preventing surgical site infection due to its inherent antibacterial properties. Three-dimensional MDA-MB-231 (breast cancer) spheroid studies demonstrate a superior efficacy and a greater reduction in spheroid growth for drugs released from the proposed composite formulation over a prolonged period, as compared with free drug treatment. Overall, the new core-shell microparticles embedded into injectable hydrogel can serve as a flexible controlled release platform for modulating the release profiles of anticancer drugs and subsequently providing a superior anticancer response.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.6b03041 | DOI Listing |
Micromachines (Basel)
August 2018
Department of Exact and Earth Sciences (DCET), University of the State of Bahia (UNEB), Salvador, BA 41150-000, Brazil.
Microbubbles have various applications including their use as carrier agents for localized delivery of genes and drugs and in medical diagnostic imagery. Various techniques are used for the production of monodisperse microbubbles including the Gyratory, the coaxial electro-hydrodynamic atomization (CEHDA), the sonication methods, and the use of microfluidic devices. Some of these techniques require safety procedures during the application of intense electric fields (e.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2016
Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585.
First-line cancer chemotherapy has been prescribed for patients suffered from cancers for many years. However, conventional chemotherapy provides a high parenteral dosage of anticancer drugs over a short period, which may cause serious toxicities and detrimental side effects in healthy tissues. This study aims to develop a new drug delivery system (DDS) composed of double-walled microparticles and an injectable hydrogel for localized dual-agent drug delivery to tumors.
View Article and Find Full Text PDFJ Mater Chem B
January 2015
Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina.
The goal of this study was to investigate the electrohydrodynamic atomization (EHDA) technology to encapsulate the water-soluble antiretroviral didanosine (ddI) within poly(epsilon-caprolactone) (PCL) particles and stabilize it in the gastric medium where it undergoes fast degradation. A preliminary study employing a one-needle setup enabled the adjustment of the critical process parameters. Then, a configuration of two concentric needles named coaxial electrohydrodynamic atomization (CEHDA) led to the formation of ddI-loaded PCL microcapsules.
View Article and Find Full Text PDFInt J Pharm
February 2011
Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK.
Submicrometre size spheres prepared from biocompatible polymers are becoming increasingly popular in drug and gene delivery. This paper describes the preparation of polymeric spheres with a mean diameter of 0.4 μm with a polydispersivity index of 8%, using coaxial electrohydrodynamic atomization (CEHDA) microbubbling.
View Article and Find Full Text PDFLangmuir
April 2010
Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK.
The feasibility of producing a hollow microsphere with a single hole in its shell by coaxial electrohydrodynamic atomization (CEHDA) is demonstrated. Polymethylsilsesquioxane (PMSQ) was used as a model shell material encapsulating a core of a volatile liquid, perfluorohexane (PFH), which was subsequently evaporated to produce the hollow microspheres. The diameters of the microspheres and of the single surface pore were controlled by varying the flow rate of the components, the concentration of the PMSQ solution, and the applied voltage in the CEHDA process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!