AI Article Synopsis

Article Abstract

The structure of human plasma fibronectin in 50 mM Tris-HCl buffer, pH 7.4, containing varying concentrations of NaCl, has been investigated using the small-angle X-ray method. Below 0.3 M NaCl the overall structure of the molecule is disc-shaped; at 0 M NaCl the axial ratio of the disc is about 1:7 and between 0.1 M to 0.3 M it is slightly more asymmetric, with an axial ratio of 1:10. At about 0.3 M NaCl there is a reversible transition to a more open structure, and, from 0.3 M up to 1.1 M NaCl the small-angle X-ray data can be explained by models consisting of ensembles of flexible, non-overlapping, bead-chains generated by a Monte Carlo procedure. Within this concentration range there is a gradual increase in the stiffness of the chains, as well as a decrease in bead radius, which indicates that the molecule becomes more open when the NaCl concentration is increased. The transition to a more open structure is also demonstrated by the average radius of gyration which increases gradually from 8.26 nm at 0 M NaCl to 8.75 nm at physiological or near-physiological conditions, and up to 16.2 nm at 1.1 M NaCl.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00257140DOI Listing

Publication Analysis

Top Keywords

small-angle x-ray
12
nacl
9
structure human
8
human plasma
8
plasma fibronectin
8
nacl concentration
8
axial ratio
8
transition open
8
open structure
8
solution structure
4

Similar Publications

Hypothesis: Due to its huge polar headgroup, octaoxyethylene octyl ether carboxylic acid (CECHCOOH = Akypo LF2™) is supposed not to be able to change its curvature sufficiently to form bicontinuous microemulsions. Instead, upon adding an oil to the binary water - surfactant system, excess oil could be squeezed out or a biliquid foam could form.

Experiments: An auto-dilution setup was used to record small-angle X-ray scattering data along six dilution lines in the newly established phase diagram of the ternary system 2-ethylhexanol - CECHCOOH - water.

View Article and Find Full Text PDF

In this article we describe research on the synthesis and characterization of a family of "Janus" amphiphiles composed of disaccharide head groups and alkaloid units joined together via a methylene linker, and bearing a lateral aliphatic chain of varying length. The condensed phases formed by self-organization of the products as a function of temperature were characterized by differential scanning calorimetry, thermal polarized light microscopy, and small angle X-ray scattering, allied with computational modelling and simulations. Structural studies on heating specimens from the solid showed that some homologues exhibited lamellar, columnar and bicontinuous mesophases, whereas the same homologues revealed different phase sequences on cooling from the amorphous liquid.

View Article and Find Full Text PDF

Nonstoichiometric pseudoprotic ionic liquids (NPPILs) are an emerging class of ionic liquids with interesting physical properties and intriguing prospects for technological applications. However, fundamental questions remain about the proton transfer equilibria that underlie their ionic character. We use a combination of nuclear magnetic resonance spectroscopy, infrared spectroscopy, and small-angle X-ray scattering to characterize the equilibria of trihexylamine/butyric acid and water/butyric acid mixtures.

View Article and Find Full Text PDF

Structural Transformation and Degradation of Cu Oxide Nanocatalysts during Electrochemical CO Reduction.

J Am Chem Soc

January 2025

Liquid Sunlight Alliance, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States.

The electrochemical CO reduction reaction (CORR) holds enormous potential as a carbon-neutral route to the sustainable production of fuels and platform chemicals. The durability for long-term operation is currently inadequate for commercialization, however, and the underlying deactivation process remains elusive. A fundamental understanding of the degradation mechanism of electrocatalysts, which can dictate the overall device performance, is needed.

View Article and Find Full Text PDF

The structural organisation of pentraxin-3 and its interactions with heavy chains of inter-α-inhibitor regulate crosslinking of the hyaluronan matrix.

Matrix Biol

January 2025

Manchester Cell-Matrix Centre, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK; Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, M13 9PL, United Kingdom. Electronic address:

Pentraxin-3 (PTX3) is an octameric protein, comprised of eight identical protomers, that has diverse functions in reproductive biology, innate immunity and cancer. PTX3 interacts with the large polysaccharide hyaluronan (HA) to which heavy chains (HCs) of the inter-α-inhibitor (IαI) family of proteoglycans are covalently attached, playing a key role in the (non-covalent) crosslinking of HC•HA complexes. These interactions stabilise the cumulus matrix, essential for ovulation and fertilisation in mammals, and are also implicated in the formation of pathogenic matrices in the context of viral lung infections.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!