Fluorescent Gold Nanoclusters with Interlocked Staples and a Fully Thiolate-Bound Kernel.

Angew Chem Int Ed Engl

Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanostructures, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, China.

Published: September 2016

The structural features that render gold nanoclusters intrinsically fluorescent are currently not well understood. To address this issue, highly fluorescent gold nanoclusters have to be synthesized, and their structures must be determined. We herein report the synthesis of three fluorescent Au24 (SR)20 nanoclusters (R=C2 H4 Ph, CH2 Ph, or CH2 C6 H4 (t) Bu). According to UV/Vis/NIR, differential pulse voltammetry (DPV), and X-ray absorption fine structure (XAFS) analysis, these three nanoclusters adopt similar structures that feature a bi-tetrahedral Au8 kernel protected by four tetrameric Au4 (SR)5 motifs. At least two structural features are responsible for the unusual fluorescence of the Au24 (SR)20 nanoclusters: Two pairs of interlocked Au4 (SR)5 staples reduce the vibration loss, and the interactions between the kernel and the thiolate motifs enhance electron transfer from the ligand to the kernel moiety through the Au-S bonds, thereby enhancing the fluorescence. This work provides some clarification of the structure-fluorescence relationship of such clusters.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201606661DOI Listing

Publication Analysis

Top Keywords

gold nanoclusters
12
fluorescent gold
8
structural features
8
au24 sr20
8
sr20 nanoclusters
8
au4 sr5
8
nanoclusters
6
fluorescent
4
nanoclusters interlocked
4
interlocked staples
4

Similar Publications

Ultrasmall and highly fluorescent gold nanoclusters (Au NCs) have been widely used for the construction of sensing and imaging platforms. Specifically, through a combination of surface functionalization and spectral analysis and/or imaging techniques, effective intracellular detection and imaging are realized. In this review, we summarize the recently adopted intracellular analysis and imaging events with Au NCs-based probes.

View Article and Find Full Text PDF

Gold nanoparticles can exhibit unique physical and chemical properties, such as plasmon resonances or photoluminescence. These nanoparticles have many atoms, which leads to high computational costs for density functional theory (DFT) calculations. In this work, we used the FLARE++ (fast learning of atomistic rare events) code and incorporated an active learning algorithm to construct force fields for gold thiolate-protected nanoclusters.

View Article and Find Full Text PDF

Detecting β-lactoglobulin (β-Lg) with high sensitivity and selectivity is an urgent requirement due to nearly 80% of milk anaphylaxis, such as respiratory tract, skin urticaria, and gastrointestinal disorders, being caused by β-Lg. An ultrasensitive β-Lg electrochemical aptasensor utilizing core-satellite gold nanoparticle@silver nanocluster (AuNPs@AgNCs) nanohybrids as electrocatalysts was developed. First, β-Lg aptamer was anchored on gold electrodes and AuNPs to obtain high selectivity.

View Article and Find Full Text PDF

Gold nanoclusters (Au NCs) protected by molecular ligands represent a new class of second-generation near-infrared (NIR-II) luminescent materials that have been widely studied. However, the photoluminescence efficiencies of most NIR-II emitting Au NCs in aqueous solution are generally lower than 0.2%, and to fully exploit the advantages of AuNCs in the NIR-II region, improving their photoluminescence efficiency has become an urgent need.

View Article and Find Full Text PDF

Ligand-induced changes in the electrocatalytic activity of atomically precise Au nanoclusters.

Chem Sci

January 2025

School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University Chongqing 401331 China

Atomically precise gold nanoclusters have shown great promise as model electrocatalysts in pivotal electrocatalytic processes such as the hydrogen evolution reaction (HER) and carbon dioxide reduction reaction (CORR). Although the influence of ligands on the electronic properties of these nanoclusters is well acknowledged, the ligand effects on their electrocatalytic performances have been rarely explored. Herein, using [Au(SR)] nanoclusters as a prototype model, we demonstrated the importance of ligand hydrophilicity hydrophobicity in modulating the interface dynamics and electrocatalytic performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!