N-Sulfanylethylcoumarinyl amide (SECmide) peptide, which was initially developed for use in the fluorescence-guided detection of promoters of N-S acyl transfer, was successfully applied to a facile and side reaction-free protocol for N-S acyl-transfer-mediated synthesis of peptide thioesters. Additionally, 4-mercaptobenzylphosphonic acid (MBPA) was proven to be a useful catalyst for the SECmide or N-sulfanylethylanilide (SEAlide)-mediated NCL reaction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.orglett.6b02207 | DOI Listing |
Chem Pharm Bull (Tokyo)
April 2020
Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University.
A turn-on fluorescent traceable linker based on N-sulfanylethylcoumarinyl amide (SECmide) has been developed as an advanced cleavable linker. It was successfully employed for the enrichment and selective visualization of a target protein in cell lysate. The results demonstrated that the SECmide-based traceable linker is potentially applicable to the identification of low molecular weight target proteins, a factor which has been problematic for a previously developed N-sulfanylethylanilide-based traceable linker.
View Article and Find Full Text PDFOrg Lett
September 2016
Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan.
N-Sulfanylethylcoumarinyl amide (SECmide) peptide, which was initially developed for use in the fluorescence-guided detection of promoters of N-S acyl transfer, was successfully applied to a facile and side reaction-free protocol for N-S acyl-transfer-mediated synthesis of peptide thioesters. Additionally, 4-mercaptobenzylphosphonic acid (MBPA) was proven to be a useful catalyst for the SECmide or N-sulfanylethylanilide (SEAlide)-mediated NCL reaction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!