Burkholderia pseudomallei is a Gram-negative bacterium that causes melioidosis. Inhalational exposure leading to pulmonary melioidosis is the most common clinical manifestation with significant mortality. However, the role of B. pseudomallei biofilm phenotype during bacterial-host interaction remains unclear. We hypothesize that biofilm phenotype may play a role in such interactions. In this study, B. pseudomallei H777 (biofilm wild type), B. pseudomallei M10 (biofilm mutant) and B. pseudomallei C17 (biofilm-complemented) strains were used to assess the contribution of biofilm to adhesion to human lung epithelial cells (A549), intracellular interactions, apoptosis/necrosis and impact on proinflammatory responses. Confocal laser scanning microscopy demonstrated that B. pseudomallei H777 and C17 produced biofilm, whereas M10 did not. To determine the role of biofilm in host interaction, we assessed the ability of each of the three strains to interact with the A549 cells at MOI 10. Strain H777 exhibited higher levels of attachment and invasion compared to strain M10 (p < 0.05). In addition, the biofilm-complemented strain, C17 exhibited restored bacterial invasion ability. Flow cytometry combined with a double-staining assay using annexin V and propidium iodide revealed significantly higher numbers of early apoptotic and late apoptotic A549 cells when these were infected with strain H777 (1.52%) and C17 (1.43%) compared to strain M10 (0.85%) (p < 0.05). Strains H777 and C17 were able to stimulate significant secretion of IL-6 and IL-8 compared with the biofilm mutant (p < 0.05). Together, these findings demonstrated the role of biofilm-associated phenotypes of B. pseudomallei in cellular pathogenesis of human lung epithelial cells with respect to initial attachment and invasion, apoptosis and proinflammatory responses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4987058PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0160741PLOS

Publication Analysis

Top Keywords

a549 cells
12
biofilm
9
burkholderia pseudomallei
8
pseudomallei biofilm
8
biofilm phenotype
8
pseudomallei h777
8
biofilm mutant
8
human lung
8
lung epithelial
8
epithelial cells
8

Similar Publications

Despite significant advancements in the structural flexibility and functional diversity of fluorescent molecular sensors, the chromophores often require complex synthetic processes and are typically designed to perform only a specific function. Herein, we have demonstrated the unique features of fluorophores based on a fused coumarin-indole scaffold, which are synthetically available via a one-step reaction. Four fluorophores (ICH, ICEst, ICOMe, and ICNMe2) with varying substituents were synthesized and characterized.

View Article and Find Full Text PDF

3D Bioprinted Multidrug Resistance (MDR)-Dependent Tumor Spheroids.

ACS Appl Mater Interfaces

January 2025

College of Pharmacy, Seoul National University, Seoul 08826, South Korea.

Multidrug resistance (MDR) refers to the ability of cancer cells to resist various anticancer drugs and release them from the cells. This phenomenon is widely recognized as a significant barrier that must be overcome in chemotherapy. MDR varies depending on the number and expression level of the ATP-binding cassette transporter (ABC transporter), which is expressed differently in various cancer cells.

View Article and Find Full Text PDF

Iron oxide-based nanoparticles are promising materials for cancer thermal therapy and immunotherapy. However, several proofs of concept reported data with murine tumor models that might have limitations for clinical translation. Magnetite is nowadays the most popular nanomaterial, but doping with distinct ions can enhance thermal therapy, namely, magnetic nanoparticle hyperthermia (MNH) and photothermal therapy (PTT).

View Article and Find Full Text PDF

There is increased interest in developing non-animal test systems for inhalation exposure safety assessments. However, defined methodologies are absent for predicting local respiratory effects from inhalation exposure to irritants. The current study introduces a concept for applying in vitro and in silico methods for inhalation exposure safety assessment.

View Article and Find Full Text PDF

Background: Lung cancer (LC) is the second most lethal cancer and efficient treatments are missing. Our understanding of the underlying pathogenic mechanisms remains limited. Oridonin is a compound extracted from the Chinese herb Rabdosia rubescens with anticancer properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!