Estimating Soil Moisture Distributions across Small Farm Fields with ALOS/PALSAR.

Int Sch Res Notices

Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.

Published: August 2016

AI Article Synopsis

  • The ALOS satellite uses a high-resolution microwave sensor called PALSAR, which can detect soil moisture in small farmlands, a capability not possible with traditional methods.
  • Researchers investigated the correlation between the microwave backscattering coefficient (σ) from PALSAR and actual soil moisture levels in a cabbage field in Japan.
  • Findings indicated that the soil moisture in the top 0-20 cm closely correlates with σ, indicating that PALSAR can effectively estimate soil moisture in both bare fields and fields with crop cover.

Article Abstract

The ALOS (advanced land observing satellite) has an active microwave sensor, PALSAR (phased array L-band synthetic aperture radar), which has a fine resolution of 6.5 m. Because of the fine resolution, PALSAR provides the possibility of estimating soil moisture distributions in small farmlands. Making such small-scale estimates has not been available with traditional satellite remote sensing techniques. In this study, the relationship between microwave backscattering coefficient (σ) measured with PALSAR and ground-based soil moisture was determined to investigate the performance of PALSAR for estimating soil moisture distribution in a small-scale farmland. On the ground at a cabbage field in Japan in 2008, the soil moisture distribution of multiple soil layers was measured using time domain reflectometry when the ALOS flew over the field. Soil moisture in the 0-20 cm soil layer showed the largest correlation coefficient with σ (r = 0.403). The σ values also showed a strong correlation with the ground surface coverage ratio by cabbage plants. Our results suggested that PALSAR could estimate soil moisture distribution of the 0-20 cm soil layer across a bare field and a crop coverage ratio when crops were planted.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4977414PMC
http://dx.doi.org/10.1155/2016/4203783DOI Listing

Publication Analysis

Top Keywords

soil moisture
28
estimating soil
12
moisture distribution
12
soil
9
moisture distributions
8
distributions small
8
fine resolution
8
0-20 cm soil
8
soil layer
8
coverage ratio
8

Similar Publications

Future increase in compound soil drought-heat extremes exacerbated by vegetation greening.

Nat Commun

December 2024

Institute of Carbon Neutrality, Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China.

Compound soil drought and heat extremes are expected to occur more frequently with global warming, causing wide-ranging socio-ecological repercussions. Vegetation modulates air temperature and soil moisture through biophysical processes, thereby influencing the occurrence of such extremes. Global vegetation cover is broadly expected to increase under climate change, but it remains unclear whether vegetation greening will alleviate or aggravate future increases in compound soil drought-heat events.

View Article and Find Full Text PDF

Environmental Conditions Modulate Warming Effects on Plant Litter Decomposition Globally.

Ecol Lett

January 2025

Climate Impacts Research Centre, Department of Ecology and Environmental Sciences, Umeå University, Umeå, Sweden.

Empirical studies worldwide show that warming has variable effects on plant litter decomposition, leaving the overall impact of climate change on decomposition uncertain. We conducted a meta-analysis of 109 experimental warming studies across seven continents, using natural and standardised plant material, to assess the overarching effect of warming on litter decomposition and identify potential moderating factors. We determined that at least 5.

View Article and Find Full Text PDF

Wi-Fi signal for soil moisture sensing.

Environ Monit Assess

December 2024

Division of Soil Science, Institute of Geoecology, TU Braunschweig, Brunswick, Germany.

Measuring soil moisture is essential in various scientific and engineering disciplines. Over recent decades, numerous technologies have been employed for in situ monitoring of soil moisture. Currently, dielectric-based sensors are the most popular measurement technology and provide acceptable accuracy for various measurement purposes.

View Article and Find Full Text PDF

Characterization of a biocomposite film using coconut jelly powder to improve arrowroot starch and sodium alginate film forming properties.

Int J Biol Macromol

December 2024

Department of Marine, Faculty of Fisheries and Marine, Universitas Airlangga, Campus C UNAIR, Mulyorejo, Surabaya 60115, Indonesia; Research Group of Post-harvest, Processing Technology, and Bioproducts, Faculty of Fisheries and Marine, Universitas Airlangga, Mulyorejo, Surabaya 60115, Indonesia. Electronic address:

Composite polymers are promising solution to structural setbacks of starch and alginate-based films due to their hydrophilic attributes. Hence, this study aimed to investigate young coconut jelly powder (CJP), an under-utilized by-waste, as a filler using the casting method to develop a novel biocomposite from increments of CJP (1-3 %) to a blended resin of arrowroot starch, sodium alginate, and glycerol. Moreover, the films were characterized by physicomechanical (visual aspect, thickness, color, moisture content, tensile strength, and elongation at break); surface microstructure; water barrier (water vapor permeability, water solubility, and water activities); thermal, crystallinity, and functional group properties; soil, river water, and seawater biodegradability; and coating application in cherry tomato.

View Article and Find Full Text PDF

Extreme climate events, particularly droughts, pose significant threats to vegetation, severely impacting ecosystem functionality and resilience. However, the limited temporal resolution of current satellite data hinders accurate monitoring of vegetation's diurnal responses to these events. To address this challenge, we leveraged the advanced satellite ECOSTRESS, combining its high-resolution evapotranspiration (ET) data with a LightGBM model to generate the hourly continuous ECOSTRESS-based ET (HC-ET) for the middle and lower reaches of the Yangtze River Basin (YRB) from 2015 to 2022.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!