Binding interactions of perfluoroalkyl substances with thyroid hormone transport proteins and potential toxicological implications.

Toxicology

State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China. Electronic address:

Published: July 2016

Perfluoroalkyl substances (PFASs) have been shown to cause abnormal levels of thyroid hormones (THs) in experimental animals, but the molecular mechanism is poorly understood. Here, a fluorescence displacement assay was used to determine the binding affinities of 16 PFASs with two major TH transport proteins, transthyretin (TTR) and thyroxine-binding globulin (TBG). Most of the tested PFASs bound TTR with relative potency (RP) values of 3×10(-4) to 0.24 when compared with that of the natural ligand thyroxine, whereas fluorotelomer alcohols did not bind. Only perfluorotridecanoic acid and perfluorotetradecanoic acid bound TBG, with RP values of 2×10(-4) when compared with that of thyroxine. Based on these results, it was estimated that displacement of T4 from TTR by perfluorooctane sulfonate and perfluorooctanoic acids would be significant for the occupationally exposed workers but not the general population. Structure-binding analysis revealed that PFASs with a medium chain length and a sulfonate acid group are optimal for TTR binding, and PFASs with lengths longer than 12 carbons are optimal for TBG binding. Three mutant proteins were prepared to examine crucial residues involved in the binding of PFASs to TH transport proteins. TTR with a K15G mutation and TBG with either a R378G or R381G mutation showed decreased binding affinity to PFASs, indicating that these residues play key roles in the interaction with the compounds. Molecular docking showed that the PFASs bind to TTR with their acid group forming a hydrogen bond with K15 and the hydrophobic chain towards the interior. PFASs were modeled to bind TBG with their acid group forming a hydrogen bond with R381 and the hydrophobic chain extending towards R378. The findings aid our understanding of the behavior and toxicity of PFASs on the thyroid hormone system.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tox.2016.08.011DOI Listing

Publication Analysis

Top Keywords

transport proteins
12
acid group
12
pfass
10
perfluoroalkyl substances
8
thyroid hormone
8
binding pfass
8
group forming
8
forming hydrogen
8
hydrogen bond
8
hydrophobic chain
8

Similar Publications

Imaging phenotype reveals that disulfirams induce protein insolubility in the mitochondrial matrix.

Sci Rep

December 2024

Center for Drug Discovery, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka, 422-8526, Shizuoka, Japan.

The cell painting assay is useful for understanding cellular phenotypic changes and drug effects. To identify other aspects of well-known chemicals, we screened 258 compounds with the cell painting assay and focused on a mitochondrial punctate phenotype seen with disulfiram. To elucidate the reason for this punctate phenotype, we looked for clues by examining staining steps and gene knockdown as well as examining protein solubility and comparing cell lines.

View Article and Find Full Text PDF

The western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte, has evolved resistance to nearly every management tactic utilized in the field. This study investigated the resistance mechanisms in a WCR strain resistant to the Bacillus thuringiensis (Bt) protein eCry3.1Ab using dsRNA to knockdown WCR midgut genes previously documented to be associated with the resistance.

View Article and Find Full Text PDF

Yu-Ping-Feng-San (YPF) is a famous classical Chinese medicine formula known for its ability to boost immunity. YPF has been applied to enhance the immune status of tumor patients in clinical practice. However, there is still a lack of research on its immune regulatory effects and mechanisms in the tumor microenvironment.

View Article and Find Full Text PDF

Carbon dots (CDs) are versatile nanomaterials that are considered ideal for application in bioimaging, drug delivery, sensing, and optoelectronics owing to their excellent photoluminescence, biocompatibility, and chemical stability features. Nitrogen doping enhances the fluorescence of CDs, alters their electronic properties, and improves their functional versatility. N-doped CDs can be synthesized via solvothermal treatment of carbon sources with nitrogen-rich precursors; however, systematic investigations of their synthesis mechanisms have been rarely reported.

View Article and Find Full Text PDF

In yeast and mammals, the EXO70 subunit of the exocyst complex plays a key role in mediating the tethering of exocytic vesicles to the plasma membrane (PM). In plants, however, the role of EXO70 in regulating vesicle tethering during exocytosis remains unclear. In land plants, EXO70 has undergone significant evolutionary expansion, resulting in multiple EXO70 paralogues that may allow the exocyst to form various isoforms with specific functions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!