Previously, we demonstrated that the soluble IL-6R (sIL-6R) plays an important role in the host antiviral response through induction of type I IFN and sIL-6R-mediated antiviral action via the IL-27 subunit p28; however, the mechanism that underlies sIL-6R and p28 antiviral action and whether type III IFN is involved remain unknown. In this study, we constructed a sIL-6R and p28 fusion protein (sIL-6R/p28 FP) and demonstrated that the fusion protein has stronger antiviral activity than sIL-6R alone. Consequently, knockout of sIL-6R inhibited virus-triggered IFN-λ1 expression. In addition, sIL-6R/p28 FP associated with mitochondrial antiviral signaling protein and TNFR-associated factor 6, the retinoic acid-inducible gene I adapter complex, and the antiviral activity mediated by sIL-6R/p28 FP was dependent on mitochondrial antiviral signaling protein. Furthermore, significantly reduced binding of p50/p65 and IFN regulatory factor 3 to the IFN-λ1 promoter was observed in sIL-6R knockout cells compared with the control cells. Interestingly, a novel heterodimer of c-Fos and activating transcription factor 1 was identified as a crucial transcriptional activator of IFN-λ1 The sIL-6R/p28 FP upregulated IFN-λ1 expression by increasing the binding abilities of c-Fos and activating transcription factor 1 to the IFN-λ1 promoter via the p38 MAPK signaling pathway. In conclusion, these results demonstrate the important role of sIL-6R/p28 FP in mediating virus-induced type III IFN production.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4049/jimmunol.1600627 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!