An aryne 1,2,3-trisubstitution with aryl allyl sulfoxides is accomplished, featuring an incorporation of C-S, C-O, and C-C bonds on the consecutive positions of a benzene ring. The reaction condition is mild with broad substrate scope. Preliminary mechanistic study suggests a cascade formal [2 + 2] reaction of aryne with S═O bond, an allyl S → O migration, and a Claisen rearrangement.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.6b06981 | DOI Listing |
Molecules
January 2025
Université de Reims Champagne-Ardenne, CNRS, ICMR, 51097 Reims, France.
A straightforward synthetic route towards DAB-1 scaffolded dimeric iminosugars is described here, starting from readily available bis-glycosylamines. The method allows the integration of a variety of linkages (aryl, alkyl, polyethyleneglycol chains) between both iminosugars through the choice of the bis-amine used in the first step. Moreover, an additional substituent (allyl, ethynyl) may be inserted into the structure via nucleophilic addition of an organometallic reagent to the starting bis-glycosylamine.
View Article and Find Full Text PDFJ Org Chem
January 2025
Laboratory of Pharmaceutical Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan.
A one-pot, telescoped transformation of silyl ethers into cyanides that proceeds via silyl-ether oxidation mediated by nitroxyl-radical catalyst and [bis(trifluoroacetoxy)iodo]benzene followed by an imine formation-oxidation sequence using iodine and aqueous ammonia is reported. This transformation is effective for the site-selective transformation of benzylic and allylic silyl ethers in the presence of other silyl ethers. Using an -protected oxime and a catalytic amount of triflic acid instead of iodine/aqueous ammonia is also effective for cyanation.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China.
Rhodium-catalyzed regio- and enantioselective allylic arylation of racemic alkyl- and aryl- substituted allylic carbonates with arylboronic acids using commercially available BIBOP ligand is reported. This reaction proceeds at room temperature without base or other additive to deliver allylic arylation products in excellent yields, regio- and enantioselectivity (up to 95 % yield, >20 : 1 b/l, >99 % ee). Rh/BIBOP is disclosed as an efficient catalytic system for allylic substitution reaction.
View Article and Find Full Text PDFOrg Lett
January 2025
China Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, and Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China.
Herein, a one-pot domino catalyzed three-component process is described, which is initiated by a palladium/zinc cooperatively catalyzed cycloaddition between trimethylenemethane (TMM) and unactivated alkyl/aryl imines, followed by one-pot isomerization and Zn(OTf)-catalyzed DDQ oxidation, furnishing valuable substituted pyrroles. We disclose that the palladium/zinc cooperative catalysis affords a dual-Zn(OTf)-stabilized azapalladacycle, wherein the Pd-N bond is polarized by Zn(OTf), facilitating a unique outer-sphere allylic amination. Moreover, subsequent DDQ dehydrogenation can be feasibly promoted by zinc catalysis.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India.
Chiral allylamines are important structural components in natural products, pharmaceuticals, and chiral catalysts. Herein, we report a cobalt-catalyzed enantioselective reductive coupling of imines with internal alkynes to synthesize chiral allylamines. The reaction is catalyzed by a cobalt complex derived from commercially available bisphosphine ligand utilizing zinc as the electron donor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!