Optical feedback interferometry (OFI) is a compact sensing technique with recent implementation for flow measurements in microchannels. We propose implementing OFI for the analysis at the microscale of multiphase flows starting with the case of parallel flows of two immiscible fluids. The velocity profiles in each phase were measured and the interface location estimated for several operating conditions. To the authors knowledge, this sensing technique is applied here for the first time to multiphase flows. Theoretical profiles issued from a model based on the Couette viscous flow approximation reproduce fairly well the experimental results. The sensing system and the analysis presented here provide a new tool for studying more complex interactions between immiscible fluids (such as liquid droplets flowing in a microchannel).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5017398 | PMC |
http://dx.doi.org/10.3390/s16081233 | DOI Listing |
We present a new, to the best of our knowledge, approach for self-heterodyne optical frequency comb (OFC) spectroscopy in which a single Mach-Zehnder modulator is utilized to generate both an optical frequency comb and a frequency-shifted local oscillator. This method allows for coherent, time-domain averaging to be performed without the need for feedback mechanisms or software corrections. As an initial demonstration, we have measured acetylene rovibrational transition frequencies with coherently averaged comb spectra.
View Article and Find Full Text PDFThis study proposes and experimentally demonstrates a distributed feedback (DFB) laser with a distributed phase shift (DPS) region at the center of the DFB cavity. By modeling the field intensity distribution in the cavity and the output spectrum, the DPS region length and phase shift values have been optimized. Experimental comparisons with lasers using traditional π-phase shifts confirm that DFB lasers with optimized DPS lengths and larger phase shifts (up to 15π) achieve stable single longitudinal mode operation over a broader current range, with lower threshold current, higher power slope efficiency, and a higher side mode suppression ratio (SMSR).
View Article and Find Full Text PDFACS Sens
January 2025
Department of Mechanical Engineering, University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, British Columbia V6T 1Z4, Canada.
Natural gas (NG) is a promising alternative to diesel for sustainable transport, potentially reducing GHG and air quality emissions significantly. However, the GHG benefits hinge on managing methane slip, the unburned methane in the exhaust of NG engines, which carries a significant global warming potential. The CH slip from NG engines is highly dependent on engine type and operation, and effective greenhouse gas emission mitigation requires that the actual operation of real-world engines is monitored.
View Article and Find Full Text PDFNano Lett
January 2025
State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China.
Optical computing, renowned for its light-speed processing and low power consumption, typically relies on the coherent control of two light sources. However, there are challenges in stabilizing and maintaining high optical spatiotemporal coherence, especially for large-scale computing systems. The coherence requires rigorous feedback circuits and numerous phase shifters, introducing system instability and complexity.
View Article and Find Full Text PDFiScience
January 2025
School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran 14399-57131, Iran.
Microsaccades, a form of fixational eye movements, help maintain visual stability during stationary observations. This study examines the modulation of microsaccadic rates by various stimulus categories in monkeys and humans during a passive viewing task. Stimulus sets were grouped into four primary categories: human, animal, natural, and man-made.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!