Evaluation of the in vitro antibacterial activity of the solvent fractions of the leaves of Rhamnus prinoides L'Herit (Rhamnaceae) against pathogenic bacteria.

BMC Complement Altern Med

Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, Addis Ababa University, P. O. Box, 1176, Addis Ababa, Ethiopia.

Published: August 2016

Background: Medicinal plants play great roles in the treatment of various infectious diseases. Rhamnus prinoides is one of the medicinal plants used traditionally for treatment of bacterial diseases. The antibacterial activity of the crude extract of the plant had been shown by a previous study, but this study was undertaken to further the claimed medicinal use of the plant by screening its solvent fractions for the said activity so that it could serve as a basis for subsequent studies.

Methods: The solvent fractions of the plant were obtained by successive soxhlet extraction with solvents of increasing polarity, with chloroform and methanol, followed by maceration of the marc of methanol fraction with water. The antibacterial activity of the solvent fractions was evaluated on seven bacterial species using agar well diffusion method at different concentrations (78 mg/well, 39 mg/well and 19.5 mg/well) in the presence of positive and negative controls. The minimum inhibitory concentration of the solvent fractions was determined by micro-broth dilution method using resazurin as indicator.

Result: Methanol and chloroform fractions revealed antibacterial activities against the growth of test bacterial strains with varying antibacterial spectrum and the susceptible bacterial species were Staphylococcus aureus, Streptococcus pyogen, Streptococcus pneumoniae and Salmonella typhi. The average minimum inhibitory concentration value of the methanol and chloroform fractions ranged from 8.13 mg/ml to 32.5 mg/ml and from 8.13 mg/ml to 16.25 mg/ml, respectively.

Conclusion: The methanol and chloroform fractions demonstrated significant antibacterial activities against the growth of pathogenic bacteria but the aqueous fraction did not reveal antibacterial activity against any of the test bacteria.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4986379PMC
http://dx.doi.org/10.1186/s12906-016-1279-6DOI Listing

Publication Analysis

Top Keywords

solvent fractions
20
antibacterial activity
16
methanol chloroform
12
chloroform fractions
12
activity solvent
8
fractions
8
rhamnus prinoides
8
pathogenic bacteria
8
medicinal plants
8
bacterial species
8

Similar Publications

Introduction: Pharmacological studies have shown that the rhizome of Atractylodes macrocephala Koidz. (Compositae), commonly known as atractylodes macrocephala rhizome (AMR), can modulate immunity. Nevertheless, its resources have been largely depleted, and the pharmacological activity of artificial AMR is relatively modest.

View Article and Find Full Text PDF

In the present study, the mixed micellization behavior of gemini surfactant-1, 5-bis (N-hexadecyl- N, N-dimethylammonium) pentane dibromide (G5) with non-ionic surfactant triton X-100 (TX-100) was investigated in the micellar phase by utilizing the conductometric technique. The deviation of ideal critical micelle concentration (cmc*) from experimental critical micelle concentration (cmc) has been estimated using well-known Clint's theory of mixed micelles. The regular solution approximation was used to determine the interaction parameter (β) and found to be negative.

View Article and Find Full Text PDF

Polyurethane (PU), as a thermoset polymer, is extensively utilized in various applications, such as refrigerator foams, sponges, elastomers, shoes, etc. However, the recycling of post-consumed PU poses significant challenges due to its intricate and extensive crosslinking structures. Catalytic hydrogenation is one of the most effective methods for recycling PU waste, nevertheless, there is currently a lack for a hydrogenation catalyst that is both high-performing, recyclable, and cost-effective for breaking down post-consumed PU materials.

View Article and Find Full Text PDF

The light-absorbing chemical components of atmospheric organic aerosols are commonly referred to as Brown Carbon (BrC), reflecting the characteristic yellowish to brown appearance of aerosol. BrC is a highly complex mixture of organic compounds with diverse compositions and variable optical properties of its individual chromophores. BrC significantly influences the radiative budget of the climate and contributes to adverse air pollution effects such as reduced visibility and the presence of inhalable pollutants and irritants.

View Article and Find Full Text PDF

Organophosphate pesticides can cause long-term neurological damage to humans. There is an urgent need to develop a more sensitive and efficient method for detecting trace amounts of organophosphorus pesticides in orange juice, particularly in the presence of interfering substances. This study developed a dispersive solid-phase extraction (DSPE) method using amorphous UiO-66 (aUiO-66) as an adsorbent for the detection of four organophosphate pesticides (fenthion, profenofos, fensulfothion, and chlorpyrifos) in orange juice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!