The mechanism by which spinal cord injury (SCI) induces neuronal death has not been thoroughly understood. Investigation on the molecular signal pathways involved in SCI-mediated neuronal apoptosis is important for development of new therapeutics for SCI. In the current study, we explore the role of heme oxygenase-1 (HO-1) in the modulation of mixed lineage kinase 3/mitogen-activated protein kinase kinase/cJUN N-terminal kinase 3 (MLK3/MKK7/JNK3) signaling, which is a pro-apoptotic pathway, after SCI. We found that MLK3/MKK7/JNK3 signaling was activated by SCI in a time-dependent manner, demonstrated by increase in activating phosphorylation of MLK3, MKK7, and JNK3. SCI also induced HO-1 expression. Administration of HO-1-expressing adeno-associated virus before SCI introduced expression of exogenous HO-1 in injured spinal cords. Exogenous HO-1 reduced phosphorylation of MLK3, MKK7, and JNK3. Consistent with its inhibitory effect on MLK3/MKK7/JNK3 signaling, exogenous HO-1 decreased SCI-induced neuronal apoptosis and improved neurological score. Further, we found that exogenous HO-1 inhibited expression of cell division cycle 42 (Cdc42), which is crucial for MLK3 activation. In vitro experiments indicated that Cdc42 was essential for neuronal apoptosis, while transduction of neurons with HO-1-expressing adeno-associated virus significantly reduced neuronal apoptosis to enhance neuronal survival. Therefore, our study disclosed a novel mechanism by which HO-1 exerted its neuroprotective efficacy. Our discovery might be valuable for developing a new therapeutic approach for SCI.

Download full-text PDF

Source
http://dx.doi.org/10.1089/neu.2016.4608DOI Listing

Publication Analysis

Top Keywords

neuronal apoptosis
20
exogenous ho-1
16
mlk3/mkk7/jnk3 signaling
12
heme oxygenase-1
8
spinal cord
8
cord injury
8
phosphorylation mlk3
8
mlk3 mkk7
8
mkk7 jnk3
8
ho-1-expressing adeno-associated
8

Similar Publications

Genistein-3'-sodium sulfonate suppresses NLRP3-mediated cell pyroptosis after cerebral ischemia.

Metab Brain Dis

January 2025

Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases of Ministry of Education, Gannan Medical University, Ganzhou, 341000, China.

Cerebral ischemia-induced pyroptosis contributes to the dissemination of neuroinflammation, and Nod-like receptor protein-3 (NLRP3) inflammasome plays a key role in this process. Previous studies have indicated that Genistein-3'-sodiumsulfonate (GSS) can inhibit neuroinflammation caused by cerebral ischemia, exert cerebroprotective effects, but its specific mechanism has not been comprehensively understood. The aim of this study was to explore the effect of GSS on ischemic stroke-induced cell pyroptosis.

View Article and Find Full Text PDF

Objective: The study aims to investigate the long-term impacts of traumatic brain injury (TBI) on neuroinflammation and neuronal apoptosis in pediatric and adult mice, specifically focusing on how age-at-injury influences these processes.

Methods: Controlled cortical impact (CCI) was used to induce TBI in pediatric (21-25 days old) and adult (8-12 weeks old) C57Bl/6 male mice. Neuroinflammation was evaluated through immunoreactivity for Iba-1 and GFAP, while apoptosis was assessed using markers such as Bax, Bcl- 2, and pro-caspase-3.

View Article and Find Full Text PDF

The carboxyl terminus of Hsc70-interacting protein (CHIP) is pivotal for managing misfolded and aggregated proteins via chaperone networks and degradation pathways. In a preclinical rodent model of CHIP-related ataxia, we observed that CHIP mutations lead to increased levels of phosphodiesterase 9A (PDE9A), whose role in this context remains poorly understood. Here, we investigated the molecular mechanisms underlying the role of PDE9A in CHIP-related ataxia and demonstrated that CHIP binds to PDE9A, facilitating its polyubiquitination and autophagic degradation.

View Article and Find Full Text PDF

Effects of natural source polysaccharides on neurological diseases: A review.

Int J Biol Macromol

January 2025

Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang 550001, China. Electronic address:

With the aging of society and changes in lifestyle, the incidence of neurological diseases (NDs) has been increasing year by year, bringing a heavy burden to patients and society. Although the efficacy of chemical drugs in the treatment of NDs is remarkable, there are problems such as high side effects and high costs. Therefore, finding mild and efficient drugs for NDs treatment has become an urgent clinical need.

View Article and Find Full Text PDF

Traditional Chinese Medicine Borneol-Based Polymeric Micelles Intracerebral Drug Delivery System for Precisely Pathogenesis-Adaptive Treatment of Ischemic Stroke.

Adv Sci (Weinh)

January 2025

Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, 266003/572024, China.

The scarcity of effective neuroprotective agents and the presence of blood-brain barrier (BBB)-mediated extremely inefficient intracerebral drug delivery are predominant obstacles to the treatment of cerebral ischemic stroke (CIS). Herein, ROS-responsive borneol-based amphiphilic polymeric NPs are constructed by using traditional Chinese medicine borneol as functional blocks that served as surface brain-targeting ligand, inner hydrophobic core for efficient drug loading of membrane-permeable calcium chelator BAPTA-AM, and neuroprotective structural component. In MCAO mice, the nanoformulation (polymer: 3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!