Gold is known currently as the most active single-element electrocatalyst for CO2 electroreduction reaction to CO. In this work, we combine Au with a second metal element, Cu, to reduce the amount of precious metal content by increasing the surface-to-mass ratio and to achieve comparable activity to Au-based catalysts. In particular, we demonstrate that the introduction of a Au-Cu bifunctional "interface" is more beneficial than a simple and conventional homogeneous alloying of Au and Cu in stabilizing the key intermediate species, *COOH. The main advantages of the proposed metal-metal bifunctional interfacial catalyst over the bimetallic alloys include that (1) utilization of active materials is improved, and (2) intrinsic properties of metals are less affected in bifunctional catalysts than in alloys, which can then facilitate a rational bifunctional design. These results demonstrate for the first time the importance of metal-metal interfaces and morphology, rather than the simple mixing of the two metals homogeneously, for enhanced catalytic synergies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.6b05903 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Peking University Shenzhen Graduate School, Shool of Chemical Biology and Biotechnology, Lishui Road, Nanshan District, -, Shenzhen, CHINA.
Regulating the coordination environment of active sites has proved powerful for tapping into their catalytic activity and selectivity in homogeneous catalysis, yet the heterogeneous nature of copper single-atom catalysts (SACs) makes it challenging. This work reports a bottom-up approach to construct a SAC (rGO@Cu-N(Hx)-C) by inlaying preformed amine coordinated Cu2+ units into reduced graphene oxide (rGO), permitting molecular level revelation on how the proximal N-site functional groups (N-H or N-CH3) impact on the carbon dioxide reduction reaction (CO2RR). It is demonstrated that the N-H moiety of rGO@Cu-NHx-C can serve as an in-situ protonation agent to accelerate the CO2-to-methane reduction kinetics, delivering a methane current density (163 mA/cm2) 2.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
Coordinatively unsaturated copper (Cu) has been demonstrated to be effective for electrifying CO reduction into C products by adjusting the coupling of C-C intermediates. Nevertheless, the intuitive impacts of ultralow coordination Cu sites on C products are scarcely elucidated due to the lack of synthetic recipes for Cu with low coordination numbers and its vulnerability to aggregation under reductive potentials. Herein, computational predictions revealed that Cu sites with higher levels of coordinative unsaturation favored the adsorption of C and C intermediates.
View Article and Find Full Text PDFSmall
January 2025
CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
Single-atom catalysts (SACs) with unique geometric and electronic configurations have triggered great interest in many important reactions. However, controllably modulating the electronic structure of metal centers to enhance catalytic performance remains a challenge. Here, the electronic structure of Ni centers over Ni-NC SACs by introducing electron-rich phosphorus or electron-deficient boron for electrochemical CO reduction (CORR) is systematically tailored.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Center for Sustainable Future Technologies @POLITO, Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Turin, Italy.
The electrochemical reduction of CO (CORR) to value-added products has garnered significant interest as a sustainable solution to mitigate CO emissions and harness renewable energy sources. Among CORR products, formic acid/formate (HCOOH/HCOO) is particularly attractive due to its industrial relevance, high energy density, and potential candidate as a liquid hydrogen carrier. This study investigates the influence of the initial oxidation state of tin on CORR performance using nanostructured SnO catalysts.
View Article and Find Full Text PDFACS Nano
January 2025
College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China.
Electrocatalytic CO-to-CO conversion with a high CO Faradaic efficiency (FE) at low overpotentials and industrial-level current densities is highly desirable but a huge challenge over non-noble metal catalysts. Herein, graphitic N-rich porous carbons supporting atomically dispersed nickel (NiN-O sites with an axial oxygen) were synthesized (denoted as O-Ni-N-GC) and applied as the cathode catalyst in a CORR flow cell. O-Ni-N-GC showed excellent selectivity with a FE over 92% at low overpotentials ranging from 17 to 60 mV, and over 99% at 80 mV.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!