Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 144
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3106
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The quantification of serum 25-hydroxyvitamin D [25(OH)D] as an indicator of vitamin D status is currently primarily conducted by immunoassays, yet LC-MS/MS would allow more accurate determination. Furthermore, LC-MS/MS would allow simultaneous measurement of multiple analytes. The aim of this study was to develop and validate an LC-MS/MS method to simultaneously measure four vitamin D metabolites (25(OH)D, 3-epi-25(OH)D, 25(OH)D, and 24,25(OH)D) in serum for clinical laboratory applications. Serum samples were first prepared in a 96-well supported liquid extraction plate and the eluate was derivatized using the Cookson-type reagent 4-(4'-dimethylaminophenyl)-1,2,4-triazoline-3,5-dione (DAPTAD), which rapidly and quantitatively reacts with the s-cis-diene structure of vitamin D metabolites. The derivatized samples were subjected to LC-MS/MS, ionized by electrospray ionization (positive-ion mode), and detected by selected reaction monitoring. The lower limits of quantification for 25(OH)D, 3-epi-25(OH)D, 25(OH)D, and 24,25(OH)D were 0.091, 0.020, 0.013, and 0.024 ng/mL, respectively. The accuracy values and the extraction recoveries for these four metabolites were satisfactory. Serum 25(OH)D levels determined by our LC-MS/MS were compared with those obtained by conventional radioimmunoassay (RIA) that cannot distinguish 25(OH)D and 25(OH)D. The values obtained by the RIA method exhibited a mean bias of about 8.35 ng/mL, most likely as a result of cross reaction of the antibody with low-abundance metabolites, including 24,25(OH)D. Various preanalytical factors, such as long sample sitting prior to serum separation, repeated freeze-thaw cycles, and the presence of anticoagulants, had no significant effects on these determinations. This high-throughput LC-MS/MS simultaneous assay of the four vitamin D metabolites 25(OH)D, 3-epi-25(OH)D, 25(OH)D, and 24,25(OH)D required as little as 20 μL serum. This method will aid further understanding of low-abundance vitamin D metabolites, as well as the accurate determination of 25(OH)D and 25(OH)D.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00216-016-9821-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!