This study investigated the nature and mechanism of juglone-induced apoptosis in the human breast cancer cell line MCF-7. The inhibitory effect of juglone on MCF-7 cell growth was evaluated by the dimethylthiazol tetrazolium assay. Morphological apoptotic changes were characterized using an inverted microscope, Hoechst 33258 fluorescence staining, and Giemsa staining. The rate of cell apoptosis, intracellular levels of reactive oxygen species (ROS), and mitochondrial membrane potential were detected using flow cytometry. Intracellular Ca(2+) concentrations were detected using laser scanning confocal fluorescence microscopy. Expression of the proteins Bcl-2, Bax, and cytochrome C was assessed by western blotting. Caspase-3 activity was quantified using a caspase-3 activity kit. Juglone inhibited the growth of MCF-7 cell line with an IC50 of 11.99 μM. The rates of MCF-7 cell apoptosis at 24 h after exposure to 5, 10, and 20 μM juglone were 9.29, 20.67, and 28.39%, respectively; compared to unexposed cells, juglone-exposed cells exhibited significant elevation in intracellular ROS level, decrease in mitochondrial membrane potential, and increase in intracellular Ca(2+) concentration. Juglone upregulated the expression of Bax, and downregulated the expression of Bcl-2, promoting the release of cytochrome C, thereby upregulating the activity of caspase-3. The results suggest that the mechanism of juglone-induced apoptosis in MCF-7 cells is characterized by elevated ROS levels, reduced Bcl-2 expression, increased Bax expression, decreased mitochondrial membrane potential, increased intracellular Ca(2+) concentration, outer mitochondrial-membrane rupture, cytochrome C release, and caspase-3 activation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4238/gmr.15038785 | DOI Listing |
Food Funct
January 2025
School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China.
Astaxanthin is a xanthophyll carotenoid which has been associated with a number of health-promoting effects, including anti-aging; however, the underlying mechanisms are not fully understood. In the present study, it was found that astaxanthin promoted the longevity of wild-type (N2) (). The lifespan-extending effect of astaxanthin was associated with a significant decrease of lipofuscin accumulation and the reduction of the age-related decline in spontaneous motility.
View Article and Find Full Text PDFMolecules
February 2024
Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China.
The pharmacological activity and medicinal significance of (AR) have rarely been documented. We examined the antioxidant and neuroprotective effects of AR on 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in an SH-SY5Y human neuroblastoma cell model of Parkinson's disease (PD) and explored the active ingredients responsible for these effects. The results showed that the AR aqueous extract could scavenge reactive oxygen species and reduce SH-SY5Y cell death induced by 6-OHDA.
View Article and Find Full Text PDFFoods
August 2022
College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
Foodborne disease caused by is a major global food safety problem. A potential solution is the antimicrobial development of the highly bioactive natural product juglone, yet few studies exist on its antibacterial mechanism against . Thus, we aimed to elucidate the antibacterial mechanism of action of juglone against by determining the resultant cell morphology, membrane permeability, membrane integrity, and proteome changes.
View Article and Find Full Text PDFBiosensors (Basel)
February 2021
Laboratory of Microbial Enzymology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Center for Biological Research of the Russian Academy of Sciences, Pushchino, 142290 Moscow Region, Russia.
Microbial reactor sensors (based on freshly harvested intact microbial cells) or microbial membrane sensors (based on immobilized microbial cells) can be used as convenient instruments for studying processes that cause the response of a biosensor, such as the properties of enzymes or the characteristics of metabolism. However, the mechanisms of the formation of biosensors responses have not yet been fully understood to study only one of these processes. In this work, the results of studies on the formation of a response to juglone for intact and immobilized bacterial cells used as receptors are presented.
View Article and Find Full Text PDFClin Exp Hypertens
May 2020
Department of Pharmacy, COMSATS University Islamabad, Abbottabad, Pakistan.
: Juglone, a natural phenolic compound obtained from the walnut tree, is known for its wide range of biological activities. However, it has yet to be tested for its effects on hypertension and vascular tone. This investigation was aimed to explore the antihypertensive effect and the nature of vascular reactivity of juglone in rat models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!