We describe refinements in optogenetic methods for circuit mapping that enable measurements of functional synaptic connectivity with single-neuron resolution. By expanding a two-photon beam in the imaging plane using the temporal focusing method and restricting channelrhodopsin to the soma and proximal dendrites, we are able to reliably evoke action potentials in individual neurons, verify spike generation with GCaMP6s, and determine the presence or absence of synaptic connections with patch-clamp electrophysiological recording.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5001837PMC
http://dx.doi.org/10.7554/eLife.14193DOI Listing

Publication Analysis

Top Keywords

circuit mapping
8
cellular resolution
4
resolution circuit
4
mapping temporal-focused
4
temporal-focused excitation
4
excitation soma-targeted
4
soma-targeted channelrhodopsin
4
channelrhodopsin describe
4
describe refinements
4
refinements optogenetic
4

Similar Publications

Innovative Method for Reliable Measurement of PEM Water Electrolyzer Component Resistances.

Small Methods

January 2025

Forschungszentrum Juelich GmbH, Institute of Energy Technologies, IET-4, Electrochemical Process Engineering, 52425, Juelich, Germany.

Understanding the sheet resistance of porous electrodes is essential for improving the performance of polymer electrolyte membrane (PEM) water electrolyzers and related technologies. Despite its importance, existing methods often fail to provide reliable and comprehensive data, especially for porous materials with complex morphologies and non-uniform thicknesses. This study introduces a robust and straightforward method for determining the sheet resistance of porous electrodes using a novel probe concept based on industrial printed circuit board (PCB) technology.

View Article and Find Full Text PDF

Word problems are essential for math learning and education, bridging numerical knowledge with real-world applications. Despite their importance, the neural mechanisms underlying word problem solving, especially in children, remain poorly understood. Here, we examine children's cognitive and brain response profiles for arithmetic word problems (AWPs), which involve one-step mathematical operations, and compare them with nonarithmetic word problems (NWPs), structured as parallel narratives without numerical operations.

View Article and Find Full Text PDF

Optimized genetic tools for neuroanatomical and functional mapping of the Aedes aegypti olfactory system.

G3 (Bethesda)

January 2025

W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA.

The mosquito Aedes aegypti is an emerging model insect for invertebrate neurobiology. We detail the application of a dual transgenesis marker system that reports the nature of transgene integration with circular donor template for CRISPR-Cas9-mediated homology-directed repair at target mosquito chemoreceptor genes. Employing this approach, we demonstrate the establishment of cell-type-specific T2A-QF2 driver lines for the A.

View Article and Find Full Text PDF

Soft Wireless Passive Chipless Sensors for Biological Applications: A Review.

Biosensors (Basel)

December 2024

School of Electrical and Automation Engineering, East China Jiaotong University, Nanchang 330013, China.

Soft wireless passive sensors have been applied in biological, engineering, and other fields due to their advantages in powerless supply and remote data transmission. External information is obtained by soft wireless passive sensors via the external coils based on electromagnetic induction. The purpose of this review paper is to outline the biological applications of soft wireless passive chipless sensors and provide a classification of wireless passive sensors and an overall explanation of the main work.

View Article and Find Full Text PDF

Background: Areas of conduction disorders play an important role in both initiation and perpetuation of AF and can be recognized by specific changes in unipolar potential morphology. For example, EGM fractionation may be caused by asynchronous activation of adjacent cardiomyocytes because of structural barriers such as fibrotic strands. However, it is unknown whether there are sex differences in unipolar potential morphology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!