Background: Immune checkpoint blockade is revolutionizing therapy for advanced cancer, but many patients do not respond to treatment. The identification of robust biomarkers that predict clinical response to specific checkpoint inhibitors is critical in order to stratify patients and to rationally select combinations in the context of an expanding array of therapeutic options.
Methods: We performed multiparameter flow cytometry on freshly isolated metastatic melanoma samples from 2 cohorts of 20 patients each prior to treatment and correlated the subsequent clinical response with the tumor immune phenotype.
Results: Increasing fractions of programmed cell death 1 high/cytotoxic T lymphocyte-associated protein 4 high (PD-1hiCTLA-4hi) cells within the tumor-infiltrating CD8+ T cell subset strongly correlated with response to therapy (RR) and progression-free survival (PFS). Functional analysis of these cells revealed a partially exhausted T cell phenotype. Assessment of metastatic lesions during anti-PD-1 therapy demonstrated a release of T cell exhaustion, as measured by an accumulation of highly activated CD8+ T cells within tumors, with no effect on Tregs.
Conclusions: Our data suggest that the relative abundance of partially exhausted tumor-infiltrating CD8+ T cells predicts response to anti-PD-1 therapy. This information can be used to appropriately select patients with a high likelihood of achieving a clinical response to PD-1 pathway inhibition.
Funding: This work was funded by a generous gift provided by Inga-Lill and David Amoroso as well as a generous gift provided by Stephen Juelsgaard and Lori Cook.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5004965 | PMC |
http://dx.doi.org/10.1172/JCI87324 | DOI Listing |
Science
January 2025
NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA.
The metabolic landscape of cancer greatly influences antitumor immunity, yet it remains unclear how organ-specific metabolites in the tumor microenvironment influence immunosurveillance. We found that accumulation of primary conjugated and secondary bile acids (BAs) are metabolic features of human hepatocellular carcinoma and experimental liver cancer models. Inhibiting conjugated BA synthesis in hepatocytes through deletion of the BA-conjugating enzyme bile acid-CoA:amino acid -acyltransferase (BAAT) enhanced tumor-specific T cell responses, reduced tumor growth, and sensitized tumors to anti-programmed cell death protein 1 (anti-PD-1) immunotherapy.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030.
The effects of T cell differentiation arising from immune checkpoint inhibition targeting cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and programmed cell death protein 1 (PD-1) on the immunological memory response remain unclear. Our investigation into the effects of anti-CTLA-4 and anti-PD-1 on memory T cell formation in mice reveals that memory T cells generated by anti-CTLA-4 exhibit greater expansion, cytokine production, and antitumor activity than those from anti-PD-1. Notably, anti-CTLA-4 preserves more T cell factor-1 (TCF-1)+ T cells during priming, while anti-PD-1 leads to more thymocyte selection-associated high mobility group box (TOX)+ T cells.
View Article and Find Full Text PDFClin Cancer Res
December 2024
Baylor University Medical Center, Dallast, Texas, United States.
Purpose: Brentuximab vedotin (BV) is hypothesized to selectively deplete T regulatory cells (Tregs) that express CD30 and re-sensitize tumors to anti-(PD-1) therapy. This study evaluated responses to BV+pembrolizumab post PD-1 and explored corresponding biomarkers.
Methods: 55 patients with metastatic non-small cell lung cancer (NSCLC) and 58 with metastatic cutaneous melanoma received ≥1 dose of BV+pembrolizumab.
JCI Insight
January 2025
Department of Immunology and.
Tumor-associated macrophages (TAMs) are one of the key immunosuppressive components in the tumor microenvironment (TME) and contribute to tumor development, progression, and resistance to cancer immunotherapy. Several reagents targeting TAMs have been tested in preclinical and clinical studies, but they have had limited success. Here, we show that a unique reagent, FF-10101, exhibited a sustained inhibitory effect against colony-stimulating factor 1 receptor by forming a covalent bond and reduced immunosuppressive TAMs in the TME, which led to strong antitumor immunity.
View Article and Find Full Text PDFMediastinum
October 2024
Department of General Thoracic Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan.
Background And Objective: Thymic epithelial tumors (TETs) are the most common neoplasm of the prevascular mediastinal compartment and are characterized by their rarity and variable clinical presentation. The present study aimed to explore the current management of patients with TET with a special focus on immunotherapy for advanced disease.
Methods: Relevant studies published between 1981 and 2024 were searched in PubMed using search terms "Thymoma", "Thymic cancer", "Myasthenia gravis", "Radiation therapy", "Surgery", and "Immunotherapy".
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!