The AMP-activated protein kinase is a metabolic regulator that transduces information about energy and nutrient availability. In yeast, the AMP-activated protein kinase, called Snf1, is activated when energy and nutrients are scarce. Earlier studies have demonstrated that activation of Snf1 requires the phosphorylation of the activation loop on threonine 210. Here we examined the regulation of Snf1 kinase activity in response to phosphorylation at other sites. Phosphoproteomic studies have identified numerous phosphorylation sites within the Snf1 kinase enzyme. We made amino acid substitutions in the Snf1 protein that were either non-phosphorylatable (serine to alanine) or phospho-mimetic (serine to glutamate) and examined the effects of these changes on Snf1 kinase function in vivo and on its catalytic activity in vitro. We found that changes to most of the phosphorylation sites had no effect on Snf1 kinase function. However, changes to serine 214, a site within the kinase activation loop, inhibited Snf1 kinase activity. Snf1-activating kinase 1 still phosphorylates Snf1-S214E on threonine 210 but the S214E enzyme is non-functional in vivo and catalytically inactive in vitro. We conclude that yeast have developed two distinct pathways for down-regulating Snf1 activity. The first is through direct dephosphorylation of the conserved activation loop threonine. The second is through phosphorylation of serine 214.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5018454 | PMC |
http://dx.doi.org/10.1016/j.bbapap.2016.08.007 | DOI Listing |
Genes (Basel)
December 2024
College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China.
Background/objectives: The sucrose non-fermentation-related kinase 1 (SnRK1) protein complex in plants plays an important role in energy metabolism, anabolism, growth, and stress resistance. SnRK1 is a heterotrimeric complex. The SnRK1 complex is mainly composed of α, β, βγ, and γ subunits.
View Article and Find Full Text PDFPlant Cell
December 2024
Department of Horticulture, Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
Nitrogen is essential for plant growth and development. SNF1-related protein kinase 1 (SnRK1) is an evolutionarily conserved protein kinase pivotal for regulating plant responses to nutrient deficiency. Here, we discovered that the expression and activity of the SnRK1 α-catalytic subunit (SnRK1α1) increased in response to low-nitrogen stress.
View Article and Find Full Text PDFSci Prog
December 2024
Department of Industrial Plant Science and Technology, College of Agriculture, Life and Environment Sciences, Chungbuk National University, Cheongju, Republic of Korea.
As sessile photoautotrophs, plants constantly encounter diverse environmental stresses. Recent research has focused on elucidating sugar and energy signaling mediated by hexokinase (HXK), sucrose non-fermenting 1-related protein kinase 1 (SnRK1), and the target of rapamycin (TOR) and assessing its intricate interplay with hormones and secondary metabolism. HXK serves as a pivotal regulator of glucose sensing and metabolism.
View Article and Find Full Text PDFPhysiol Plant
October 2024
Division of Crop Physiology and Biochemistry, ICAR-National Rice Research Institute, Cuttack, Odisha, India.
Abiotic stresses are a major constraint for agricultural productivity and food security in today's era of climate change. Plants can experience different types of abiotic stresses, either individually or in combination. Sometimes, more than one stress event may occur simultaneously or one after another during the lifecycle of the plant.
View Article and Find Full Text PDFAutophagy
November 2024
Department of Biochemistry, and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
Macroautophagy/autophagy is essential for maintaining glucose homeostasis, but the mechanisms by which cells sense glucose starvation and initiate autophagy are not yet fully understood. Recently, we reported that the assembly of a Ca-triggered Snf1-Bmh1/Bmh2-Atg11 complex initiates autophagy in response to glucose starvation. Our research reveals that during glucose starvation, the efflux of vacuolar Ca increases cytoplasmic Ca levels, which activates the protein kinase Rck2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!