STAT3 Regulates Self-Renewal of Adult Muscle Satellite Cells during Injury-Induced Muscle Regeneration.

Cell Rep

Division of Life Science, Center for Stem Cell Research and Center for Systems Biology and Human Diseases, The State Key Lab in Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China. Electronic address:

Published: August 2016

Recent studies have shown that STAT3 negatively regulates the proliferation of muscle satellite cells (MuSCs) and injury-induced muscle regeneration. These studies have been largely based on STAT3 inhibitors, which may produce off-target effects and are not cell type-specific in vivo. Here, we examine the role of STAT3 in MuSCs using two different mouse models: a MuSC-specific Stat3 knockout line and a Stat3 (MuSC-specific)/dystrophin (Dmd) double knockout (dKO) line. Stat3(-/-) MuSCs from both mutant lines were defective in proliferation. Moreover, in both mutant strains, the MuSC pool shrank, and regeneration was compromised after injury, with defects more pronounced in dKO mice along with severe muscle inflammation and fibrosis. We analyzed the transcriptomes of MuSCs from dKO and Dmd(-/-) control mice and identified multiple STAT3 target genes, including Pax7. Collectively, our work reveals a critical role of STAT3 in adult MuSCs that regulates their self-renewal during injury-induced muscle regeneration.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2016.07.041DOI Listing

Publication Analysis

Top Keywords

injury-induced muscle
12
muscle regeneration
12
stat3
8
regulates self-renewal
8
muscle satellite
8
satellite cells
8
regeneration studies
8
role stat3
8
muscle
6
muscs
5

Similar Publications

Brain-derived neurotropic factor (BDNF) is expressed by skeletal muscle as a myokine. Our previous work showed that the active precursor, proBDNF, is the predominant form of BDNF expressed in skeletal muscle, and that following skeletal muscle injury, proBDNF levels are significantly increased. However, the function of the muscle-derived proBDNF in injury-induced inflammation has yet to be fully understood.

View Article and Find Full Text PDF

Diacylglycerol kinase δ (DGKδ) phosphorylates diacylglycerol to produce phosphatidic acid. Previously, we demonstrated that down-regulation of DGKδ suppresses the myogenic differentiation of C2C12 myoblasts. However, the myogenic roles of DGKδ in vivo remain unclear.

View Article and Find Full Text PDF

Background: Skeletal muscle injury caused by excessive exercise is one of the most commonly seen clinical diseases. It is indispensable to explore drugs for treating and relieving skeletal muscle injury. Gallic acid (GA) is a polyphenolic extract that has anti-inflammatory and antioxidant biological activities.

View Article and Find Full Text PDF

The activation of progenitor cells near wound sites is a common feature of regeneration across species, but the conserved signaling mechanisms responsible for this step in whole-body regeneration are still incompletely understood. The acoel undergoes whole-body regeneration using Piwi+ pluripotent adult stem cells (neoblasts) that accumulate at amputation sites early in the regeneration process. The EGFR signaling pathway has broad roles in controlling proliferation, migration, differentiation, and cell survival across metazoans.

View Article and Find Full Text PDF

Background: Aconitine has cardiotoxicity, but the mechanism of cardiotoxicity induced by aconitine is limited. The aim of this study was to investigate the mechanism of myocardial injury induced by aconitine.

Methods: Using aconitine, ROS inhibitor N-acetylcysteine(NAC), the autophagy activitor Rapamycin (Rap) or the P38/MAPK pathway activitor Dehydrocorydaline treats H9C2 cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!