Cell polarity arises through the spatial segregation of polarity regulators. PAR proteins are polarity regulators that localize asymmetrically to two opposing cortical domains. However, it is unclear how the spatially segregated PAR proteins interact to maintain their mutually exclusive partitioning. Here, single-molecule detection analysis in Caenorhabditis elegans embryos reveals that cortical PAR-2 diffuses only short distances, and, as a result, most PAR-2 molecules associate and dissociate from the cortex without crossing into the opposing domain. Our results show that cortical PAR-2 asymmetry is maintained by the local exchange reactions that occur at the cortical-cytoplasmic boundary. Additionally, we demonstrate that local exchange reactions are sufficient to maintain cortical asymmetry in a parameter-free mathematical model. These findings suggest that anterior and posterior PAR proteins primarily interact through the cytoplasmic pool and not via cortical diffusion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.celrep.2016.07.047 | DOI Listing |
Front Immunol
January 2025
Inflammation and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
Background: Factors leading to severe COVID-19 remain partially known. New biomarkers predicting COVID-19 severity that are also causally involved in disease pathogenesis could improve patient management and contribute to the development of innovative therapies. Autophagy, a cytosolic structure degradation pathway is involved in the maintenance of cellular homeostasis, degradation of intracellular pathogens and generation of energy for immune responses.
View Article and Find Full Text PDFBMJ Open Respir Res
January 2025
Murdoch Children's Research Institute, Parkville, Victoria, Australia.
Background: The most common cause of death in those with cystic fibrosis (CF) is respiratory failure due to bronchiectasis resulting from repeated cycles of respiratory infection and inflammation. Protease-activated receptor 1 (PAR1) is a cell surface receptor activated by serine proteases including neutrophil elastase, which is recognised as a potent modulator of inflammation. While PAR1 is known to play an important role in regulating inflammation, nothing is known about any potential role of this receptor in CF pathogenesis.
View Article and Find Full Text PDFCardiovasc Diabetol
January 2025
Univ. Bordeaux, Inserm, Biology of Cardiovascular Diseases, U1034, CHU de Bordeaux, 1, Avenue de Magellan, Entrée par l'Hôpital Haut-Lévêque, 33604, Pessac, France.
Background: Chronic Limb-Threatening Ischemia (CLTI) represents the most advanced stage of Peripheral Artery Disease (PAD) and is associated with dire prognosis, characterized by a substantial risk of limb amputation and diminished life expectancy. Despite significant advancements in therapeutic interventions, the underlying mechanisms precipitating the progression of PAD to CLTI remain elusive.
Methods: Considering diabetes is one of the main risk factors contributing to PAD exacerbation into CLTI, we compared hind limb ischemia recovery in HFD STZ vs.
Transfusion
January 2025
Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
Background: Effective hemorrhage protocols prioritize immediate hemostatic resuscitation to manage hemorrhagic shock. Prehospital resuscitation using blood products, such as whole blood or alternatively dried plasma in its absence, has the potential to improve outcomes in hemorrhagic shock patients. However, integrating blood products into prehospital care poses substantial logistical challenges due to issues with storage, transport, and administration in field environments.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
Non-covalent interactions of poly(ADP-ribose) (PAR) facilitate condensate formation, yet the impact of these interactions on condensate properties remains unclear. Here, we demonstrate that PAR-mediated interactions through PARP13, specifically the PARP13.2 isoform, are essential for modulating the dynamics of stress granules-a class of cytoplasmic condensates that form upon stress, including types frequently observed in cancers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!