Amoebic gill disease (AGD) in farmed Atlantic salmon is caused by the amoeba Paramoeba perurans. The recent establishment of in vitro culture techniques for P. perurans has provided a valuable tool for studying the parasite in detail. In this study, flow cytometry was used to generate clonal cultures from single-sorted amoeba, and these were used to successfully establish AGD in experimental Atlantic salmon. The clonal cultures displayed differences in virulence, based on gill scores. The P. perurans load on gills, determined by qPCR analysis, showed a positive relationship with gill score, and with clonal virulence, indicating that the ability of amoebae to proliferate and/or remain attached on gills may play a role in virulence. Gill scores based on gross signs and histopathological analysis were in agreement. No association between level of gill score and specific gill arch was observed. It was found that for fish with lower gill scores based on histopathological examination, gross examination and qPCR analysis of gills from the same fish were less successful in detecting lesions and amoebae, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jfd.12517DOI Listing

Publication Analysis

Top Keywords

clonal cultures
12
gill scores
12
paramoeba perurans
8
flow cytometry
8
atlantic salmon
8
qpcr analysis
8
gill score
8
scores based
8
gill
7
generation paramoeba
4

Similar Publications

A total of 96 strains of Nostocales (Cyanobacteria) were established from the phyllosphere of the laurel forests in the Canary Islands (Spain) and the Azores (Portugal) using enrichment media lacking combined nitrogen. The strains were characterized by light microscopy and SSU rRNA gene comparisons. Morphologically, most strains belonged to two different morphotypes, termed "-type" and "-type".

View Article and Find Full Text PDF

This study investigated whole-cell oral cholera vaccine (kOCV) single-dose effectiveness and transmission dynamics of through 4 years of epidemiological and genomic surveillance in Democratic Republic of the Congo (DRC). Whole genome sequencing was performed on clinical and water strains from 200 patient households and found annual bimodal peaks of clade AFR10e. 1154 diarrhea patients were enrolled with 342 culture confirmed cholera patients.

View Article and Find Full Text PDF

Identification of cellular signatures associated with chinese hamster ovary cell adaptation for secretion of antibodies.

Comput Struct Biotechnol J

December 2024

Cell Culture and Fermentation Sciences, BioPharmaceutical Development, AstraZeneca, Cambridge UK.

The secretory capacity of Chinese hamster ovary (CHO) cells remains a fundamental bottleneck in the manufacturing of protein-based therapeutics. Unconventional biological drugs with complex structures and processing requirements are particularly problematic. Although engineered vector DNA elements can achieve rapid and high-level therapeutic protein production, a high metabolic and protein folding burden is imposed on the host cell.

View Article and Find Full Text PDF

Introduction: Despite a scarcity of data, before 2022 Ukraine was already considered a high-prevalence country for carbapenemase-producing Enterobacterales (CPE), and the situation has dramatically worsened during the full-scale war with Russia. The aim of this study was to analyse CPEs isolated in Poland from victims of war in Ukraine.

Methods: The study included 65 CPE isolates from March 2022 till February 2023, recovered in 36 Polish medical centres from 57 patients arriving from Ukraine, differing largely by age and reason for hospitalisation.

View Article and Find Full Text PDF

Fortimicins (FTMs) are fortamine-containing aminoglycoside antibiotics (AGAs) produced by M. olivasterospora DSM 43868 with excellent bactericidal activities against a wide range of Enterobacteriaceae and synergistic activity against multidrug-resistant (MDR) pathogens. Fortimicin-A (FTM-A), the most active member of FTMs, has the lowest susceptibility to inactivation by the aminoglycoside modifying enzymes (AMEs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!