Yield and composition of pectin extracted from Tunisian pomegranate peel.

Int J Biol Macromol

Laboratoire Analyse, Valorisation et Sécurité des Aliments, Université de Sfax, Ecole Nationale d'Ingénieurs de Sfax (ENIS), BP 3038, Sfax, Tunisia. Electronic address:

Published: December 2016

A central composite design was employed to determine the influence of extraction conditions on production yield and chemical composition of pectin from pomegranate peels. Response surface methodology (RSM) was used to quantify the integral effect of the three processing parameters (extraction duration, temperature and pH) on yield. A second-order polynomial model was developed for predicting the yield of pomegranate peels pectin based on the composite design. Yields ranged from 6.4 to 11.0±0.2%. Optimal temperature, duration and pH value of the extraction were 86°C, 80min and 1.7, respectively. The uronic acid and the total neutral sugar content of the extracted pectins ranged from 377 to 755mg/g and from 161 to 326mg/g, respectively. Moreover, the degree of methylation varied with the extraction conditions and the extracted pectins were low methylated. On high pressure size exclusion chromatography (HPSEC), the elution pattern of the acid-extracted pectins showed that severe conditions were associated with lower hydrodynamic volume.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2016.08.033DOI Listing

Publication Analysis

Top Keywords

composition pectin
8
composite design
8
extraction conditions
8
pomegranate peels
8
extracted pectins
8
yield
4
yield composition
4
pectin extracted
4
extracted tunisian
4
tunisian pomegranate
4

Similar Publications

Celery () can be considered as a model plant for studying pectin-enriched primary cell walls. In addition to parenchyma cells with xyloglucan-deficient walls, celery petioles contain collenchyma, a mechanical tissue with thickened cell walls of similar composition. This study presents a comprehensive analysis of these tissues at both early and late developmental stages, integrating data on polysaccharide yield, composition, localization, and transcriptome analysis.

View Article and Find Full Text PDF

Molybdenum Can Regulate the Expression of Molybdase Genes, Affect Molybdase Activity and Metabolites, and Promote the Cell Wall Bio-Synthesis of Tobacco Leaves.

Biology (Basel)

January 2025

National Tobacco Cultivation and Physiology and Biochemistry Research Center, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China.

Molybdenum (Mo) is widely used as a micronutrient fertilizer to improve plant growth and soil quality. However, the interactions between cell wall biosynthesis and molybdenum have not been explored sufficiently. This study thoroughly investigated the regulatory effects of different concentrations of Mo on tobacco cell wall biosynthesis from physiological and metabolomic aspects.

View Article and Find Full Text PDF

Background: Due to the totipotency of plant cells, which allows them to reprogram from a differentiated to a dedifferentiated state, plants exhibit a remarkable regenerative capacity, including under in vitro culture conditions. When exposed to plant hormones, primarily auxins and cytokinins, explant cells cultured in vitro can undergo differentiation through callus formation. Protoplast culture serves as a valuable research model for studying these processes in detail.

View Article and Find Full Text PDF

Plants commonly undergo leaf morphoanatomy and composition modifications to cope with drought stress, and these tend to reduce mesophyll conductance to CO2 diffusion (gm), a key limitation to photosynthesis. The cell wall appears to play a crucial role in this reduction, yet the specific effect of cell wall compositions on gm and the underlying regulatory mechanisms of cell wall thickness (Tcw) variation are not well understood. In this study, we subjected cotton plants to varying levels of water deficit to investigate the impact of leaf cell wall composition and the arrangement patterns of microfibrils within cell walls on Tcw and leaf gas exchange.

View Article and Find Full Text PDF

Introduction: Oxidative stress, triggered by an imbalance between reactive oxygen species (ROS) production and cellular antioxidant defense mechanisms, is implicated in various pathological conditions. Plant-derived polysaccharides have gained significant attention as potential natural antioxidants due to their biocompatibility, biodegradability, and structural versatility.

Methods: This study focuses on the purification, structural characterization, and antioxidant activities of a novel pectin polysaccharide (HFPS) isolated from the flowers of Linn.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!