In this study, we firstly investigated the association among lncRNA MALAT1, HIF-1α and HIF-2α in hepatocellular carcinoma (HCC) cells. Then, we investigated the regulative effect of MALAT1 on multi-drug resistance (MDR) in HCC cells and the underlying mechanism. The results showed that MALAT1 was over two times higher in BEL-7402/5-FU cells than in BEL-7402 cells. It was HIF-2α, but not HIF-1α induced MALAT1 upregulation in HCC cells. Dual luciferase assay demonstrated that there were at least two binding sites of miR-26b in MALAT1. Therefore, we infer that there is a HIF-2α-MALAT1-miR-216b axis in HCC cells. Cell viability assay showed that both MALAT1 siRNA and miR-216b mimics reduced IC50 of 5-FU, ADR and MMC in BEL-7402/5-FU cells. MALAT1 siRNA and miR-216b mimics showed similar effect as 3-MA on reducing LC3-II levels, inhibiting p62 degradation and suppressing GFP-LC3 puncta formation in BEL-7402/5-FU cells. Flow cytometric analysis showed that 3-MA treatment, MALAT1 siRNA and miR-216b mimics all promoted 5-FU induced apoptosis in BEL-7402/5-FU cells. Therefore, this study firstly revealed that there is a HIF-2α-MALAT1-miR-216b axis regulating MDR of HCC cells via modulating autophagy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2016.08.065DOI Listing

Publication Analysis

Top Keywords

hcc cells
20
bel-7402/5-fu cells
16
hif-2α-malat1-mir-216b axis
12
malat1 sirna
12
sirna mir-216b
12
mir-216b mimics
12
cells
10
multi-drug resistance
8
hepatocellular carcinoma
8
cells modulating
8

Similar Publications

Hepatocellular carcinoma (HCC) presents an escalating public health challenge globally. However, drug resistance has emerged as a major impediment to successful HCC treatment, limiting the efficacy of curative interventions. Despite numerous investigations into the diverse impacts of hsa-miR-125a-5p on tumor growth across different cancer types, its specific involvement in chemotherapy resistance in HCC remains elusive.

View Article and Find Full Text PDF

Purpose: Signal transducer and activator of transcription 3 (STAT3) is a transcription factor that is essential for the survival and immune sequestration of cancer cells. We conducted a phase 1 study of TTI‑101, a first-in-class, selective small-molecule inhibitor of STAT3, in patients with advanced metastatic cancer.

Patients And Methods: Patients were treated with TTI-101 orally twice daily in 28-day cycles at 4 dose levels (DLs): 3.

View Article and Find Full Text PDF

Ezrin Polarization as a Diagnostic Marker for Circulating Tumor Cells in Hepatocellular Carcinoma.

Cells

December 2024

Department of General, Visceral and Transplant Surgery, University Hospital Muenster, University of Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany.

Hepatocellular carcinoma (HCC) is the sixth most common cancer and the third leading cause of cancer-related death worldwide, with no precise method for early detection. Circulating tumor cells (CTCs) expressing the dynamic polarity of the cytoskeletal membrane protein, ezrin, have been proposed to play a crucial role in tumor progression and metastasis. This study investigated the diagnostic and prognostic potential of polarized circulating tumor cells (p-CTCs) in HCC patients.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is a common cause of cancer‑related mortality and morbidity worldwide. While iodine‑125 (I) particle brachytherapy has been extensively used in the clinical treatment of various types of cancer, the precise mechanism underlying its effectiveness in treating HCC remains unclear. In the present study, MHCC‑97H cells were treated with I, after which, cell viability and proliferation were assessed using Cell Counting Kit‑8, 5‑ethynyl‑2'‑deoxyuridine and colony formation assays, cell invasion and migration were evaluated using wound healing and Transwell assays, and cell apoptosis was determined using flow cytometry.

View Article and Find Full Text PDF

Background: Abundant research indicates that increased extracellular matrix (ECM) stiffness significantly enhances the malignant characteristics of hepatocellular carcinoma (HCC) cells. Plectin, an essential cytoskeletal linker protein, has recently emerged as a promoter of cancer progression, particularly in the context of cancer cell invasion and metastasis. However, the responsiveness of plectin to changes in ECM stiffness and its impact on HCC progression remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!