A novel type of drug-delivery scaffold based on poly(ε-caprolactone) (PCL) and zein blends was prepared by improved unidirectional freeze-drying. Scaffolds with tube-like pore structure and high porosity, up to 89%, were obtained by adjusting the concentration of the PCL and zein solutions. Characters of the prepared scaffolds, such as microstructural, porosity, and compressive strength, were evaluated. The hydrophilicity and the degradability of the composite films were investigated in contact with phosphate buffer saline (PBS). It was found that the presence of zein accelerates the degradation rate of the scaffolds in the period time of investigation (28days). The results showed an acceptable way for controlling the in vitro degradation behavior of PCL composite scaffolds by adapting the concentration of zein. In vitro protein release and degradation results revealed that the absolute weight loss of the PCL/zein scaffolds exhibited an increasing trend by increasing the amount of zein concentration in the scaffolds. The drug delivery capability of the scaffolds was tested using tetracycline hydrochloride (TCH). Sustained release of the drug was obtained, and it was found that the proportion of zein in the scaffold had a great impact on the drug release kinetics. The results demonstrated the potential of the PCL/zein biocomposite scaffolds as a suitable candidate in tissue engineering strategies for bone defect treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.msec.2016.06.009 | DOI Listing |
ACS Infect Dis
January 2025
Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, United States.
Half the world's population is at risk of developing a malaria infection, which is caused by parasites of the genus . Currently, resistance has been identified to all clinically available antimalarials, highlighting an urgent need to develop novel compounds and better understand common mechanisms of resistance. We previously identified a novel tetrahydro-β-carboline compound, PRC1590, which potently kills the malaria parasite.
View Article and Find Full Text PDFBiomater Sci
January 2025
Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India.
Hydroxyapatite (HA), the main inorganic bone component, is the most widely researched bioceramic for bone repair. This paper presents a comprehensive review of recent advancements in HA synthesis methods and their integration into additive manufacturing (AM) processes. Synthesis methodologies discussed include wet, dry, and biomimetic routes, emphasizing their impact on tailoring the physicochemical properties of HA for biomedical applications.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Nankai University, College of Chemistry, 94 Weijin Rd., 300071, Tianjin, CHINA.
Reliable methods for rapidly constructing C(sp3)-rich three-dimensional polycycles are in high demand for organic synthesis and medicinal chemistry. Although there are various mature systems for synthesizing five- or six-membered polycycles, a catalytic platform for accessing diverse cycloheptanoid-containing polycyclic scaffolds is lacking. Herein, we describe a method for copper-catalyzed intramolecular 2-aminoallyl cation-diene (4 + 3) cycloaddition reactions.
View Article and Find Full Text PDFOrg Lett
January 2025
Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States.
We present the serendipitous discovery of an unusual dimer formed from anthracene-derived polyarenes. Unlike the typical oxidative coupling of substituted aromatic scaffolds, the reaction yielded a dearomatized enone dimer as the sole product. This dearomatized motif, notably, does not undergo the commonly observed rearomatization, and no biaryl products were detected.
View Article and Find Full Text PDFOrg Biomol Chem
January 2025
Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China.
Herein, we present that treating -(2-oxo-2-phenylethyl) substituted 2-pyridones with styrenes in DMSO/HO at 120 °C affords 1,6-carboannulated 2-pyridone scaffolds with up to 79% yield. This protocol provides a simple and efficient method for obtaining complicated bicyclic 2-pyridones through a radical cascade reaction. Additionally, we have successfully synthesized 27 target compounds, which confirms the practicality and wide applicability of the proposed reaction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!