Virus-like particles (VLPs) have demonstrated to be valuable scaffolds for the display of heterologous peptides for vaccine development and other specific interactions. VLPs of primate erythroparvovirus 1, generally referred as parvovirus B19 (B19V), have already been produced in-vivo and in-vitro from the recombinant VP2 protein of this virus. In this study, chimeric forms of B19V VP2 were constructed, and their ability to assemble into VLPs was evaluated. Chimeras were composed of the VP2 protein fused, at its N-terminus, with two peptides derived from the fusion glycoprotein (F) of the respiratory syncytial virus (RSV). The chimeric proteins self-assembled into VLPs morphologically similar to B19V virions. Stability of these VLPs was analyzed under denaturation conditions with guanidinium chloride (GdnHCl). Our results indicate that the presence of the heterologous fragments increased the stability of VLPs assembled by any of the VP2 chimeras. Specific proteolysis assays shown that a fraction of the N-termini of the chimeric proteins is located on the outer surface of the VLPs. Immunogenicity of VLPs against RSV was evaluated and the results indicate that the particles can elicit a humoral immune response, although these antibodies did not cross-react with RSV in ELISA tests. These results provide novel insights into the localization of the N-termini of B19V VP2 protein after in vitro assembly into VLPs, and point them to be attractive sites to display peptides or proteins without compromise the assembly or stability of VLPs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.virusres.2016.08.007 | DOI Listing |
PLoS One
December 2024
Department of Virology II, National Institute of Infectious Diseases, Musashi-murayama, Tokyo, Japan.
Enteroviruses and rhinoviruses are highly diverse, with over 300 identified types. Reverse transcription-polymerase chain reaction (RT-PCR) assays targeting their VP1, VP4, and partial VP2 (VP4-pVP2) genomic regions are used for detection and identification. The VP4-pVP2 region is particularly sensitive to RT-PCR detection, making it efficient for clinical specimen analysis.
View Article and Find Full Text PDFPoult Sci
October 2024
State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 51064, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China. Electronic address:
Mol Ther Methods Clin Dev
December 2024
Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
Vet World
October 2024
Facultad de Ciencias de la Salud, Carrera de Medicina Veterinaria, Universidad de Las Américas (UDLA), Quito, Ecuador, Antigua Vía a Nayón S/N, Quito EC 170124, Ecuador.
Background And Aim: Viral gastroenteritis in canines is primarily caused by the canine parvovirus 2 (CPV-2). Infections by this virus can cause severe consequences in dogs, such as fever, vomiting, diarrhea, septicemia, systemic inflammation, and immunosuppression. Therefore, the mortality rate of persistent infections caused by this virus is significantly high.
View Article and Find Full Text PDFAppl Biochem Biotechnol
November 2024
Biogenes Technologies SDN BHD, Universiti Putra Malaysia, Jalan Maklumat, 43400, Serdang, Selangor, Malaysia.
Foot-and-mouth disease (FMD) is known for its highly contagious properties among cloven-hoofed animals resulting in significant morbidity rates. Incursions of this disease have caused significant losses in affected countries in Southeast Asia and Africa, even within EU countries which resulted in significant financial losses. This study is aimed at addressing existing limitations by creating a diagnostic method using aptamer-based assay.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!