A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Choosing the best molecular precursor to prepare Li4Ti5O12 by the sol-gel method using (1)H NMR: evidence of [Ti3(OEt)13](-) in solution. | LitMetric

Choosing the best molecular precursor to prepare Li4Ti5O12 by the sol-gel method using (1)H NMR: evidence of [Ti3(OEt)13](-) in solution.

Dalton Trans

Departamento de Química, Universidad de Burgos, Plaza Misael Bañuelos s/n, Burgos 09001, Spain.

Published: September 2016

(1)H NMR spectroscopy at 400 MHz in toluene-d8 of evaporated mixtures of lithium ethoxide and titanium(iv) isopropoxide in ethanol, used to prepare the spinel Li4Ti5O12 by the sol-gel method, may help clarify why the atomic ratio 5Li : 5Ti and not 4Li : 5Ti is the right choice to obtain the pure phase when performing hydrolysis at room temperature. The mixtures xLiOEt/yTi(OPr(i))4 in ethanol undergo alcohol exchange at room temperature, and the evaporated residues contain double lithium-titanium ethoxide [LiTi3(OEt)13] rather than simple mixtures of single metal alkoxides; this is of great relevance to truly understanding the chemistry and structural changes in the sol-gel process. Detailed inspection of the (1)H and (13)C VT NMR spectra of mixtures with different Li/Ti atomic ratios unequivocally shows the formation of [LiTi3(OEt)13] in a solution at low temperature. The methylene signals of free lithium ethoxide and Li[Ti3(OEt)13] coalesce at 20 °C when the atomic ratio is 5 : 5; however, the same coalescence is only observed above 60 °C when the atomic ratio is 4 : 5. We suggest that the highest chemical equivalence observed by (1)H NMR spectroscopy achieved through chemical exchange of ethoxide groups involves the highest microscopic structural homogeneity of the sol precursor and will lead to the best gel after hydrolysis. Variable temperature (1)H NMR spectra at 400 MHz of variable molar ratios of LiOEt/Ti(OPr(i))4 are discussed to understand the structural features of the sol precursor. While the precursor with the atomic ratio 5Li : 5Ti shows no signal of free LiOEt at 20 °C, both 4Li : 5Ti and 7Li : 5Ti show free LiOEt at 20 °C in their (1)H NMR spectra, indicating that the molar ratio 5Li : 5Ti gives the maximum rate of chemical exchange. DFT calculations have been performed to support the structure of the anion [Ti3(OEt)13](-) at room temperature.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c6dt01949hDOI Listing

Publication Analysis

Top Keywords

atomic ratio
16
ratio 5li  5ti
12
room temperature
12
nmr spectra
12
li4ti5o12 sol-gel
8
sol-gel method
8
nmr spectroscopy
8
400 mhz
8
lithium ethoxide
8
°c atomic
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!