The aim of this work was to recycle waste engine oil until converting it into reusable product, diesel fuel. The waste oil was treated using pyrolytic distillation. The effect of two additives (sodium hydroxide and sodium carbonate) in the purification of the obtained fuel was also studied. Moreover, the influence of the number of distillations were analysed. Some thermal and physicochemical properties (density, viscosity, colour, turbidity, acidity value, distillation curves, cetane number, corrosiveness to Cu, water content, flash point and hydrocarbons) were determined to analyse the quality of the obtained fuel. The best results were obtained with 2% of sodium carbonate and two successive distillations. The obtained results showed that pyrolytic distillation of waste engine oil is an excellent way to produce diesel fuel to be used in engines.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.wasman.2016.08.009 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
Laboratory of Design and Development of Innovative Knitted Textiles and Garments, Department of Industrial Design and Production Engineering, University of West Attica, 12244, Egaleo, Attica, Greece.
This study investigates the production of high-purity cellulose pulp from peach (Prunus persica) fruit wastes generated during the processing of a Greek compote and juice production industry. A three-step chemical process is used, including alkaline treatment with NaOH, organic acid (acetic and formic) treatment, and hydrogen peroxide treatment, with the goal of cellulose extraction and purification. A fractional factorial design optimized reagent levels, revealing the strong influence of NaOH concentration on α-cellulose content and degree of polymerization.
View Article and Find Full Text PDFWater Sci Technol
January 2025
Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium.
One of the most costly stages of activated sludge wastewater treatment plants is the treatment and dewatering of waste sludge. Chemical conditioning of sludge, as one of the most widespread methods to enhance sludge dewaterability, accounts for a significant portion of operational expenses due to the consumption of expensive polymeric compounds. This research aims to assess the cost-effectiveness of ochre soil, modified with hydrochloric acid, as an affordable mineral for conditioning waste sludge in an activated sludge system.
View Article and Find Full Text PDFWater Sci Technol
January 2025
The Institute of Applied Research, The Galilee Society, Shefa-Amr 2020000, Israel; Agrobics Ltd, Shefa-Amr 2020000, Israel; Prof. Ephraim Katzir Department of Biotechnology Engineering, Braude College of Engineering, Karmiel 2161002, Israel.
The advanced anaerobic technology (AAT), developed based on an immobilized high-rate anaerobic reactor, was applied as a pretreatment of municipal wastewater (WW) at Karmiel's treatment plant in Israel. The demonstration-scale AAT (21 m) system was operated at a flow rate of 100 mday municipal WW mixed with olive mill wastewater (OMW) (0.5 mday) to simulate the scenario of illegal discharge of agro-industrial WW.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China.
Asymmetric carbon nitride (FCN) is developed by grafting strong electronegative small molecules onto CN. The introduction of these small molecules enhances the visible light absorption range and redistributes the charge density. Combining DRS, KPFM, and DFT results, it is revealed that the strong built-in electric field and the effective spatial separation of redox sites contribute to the directional charge separation and migration for superior photocatalytic H evolution.
View Article and Find Full Text PDFHeliyon
January 2025
School of Engineering, Mining Engineering Department, Urmia University, Urmia, Iran.
The rapid impact assessment matrix (RIAM) is a widely utilized tool for evaluating environmental impacts in municipal solid waste management. However, the traditional RIAM (T-RIAM) method includes ambiguities in its scoring classification, which can hinder decision-making accuracy. This study introduces a modified RIAM approach, enhancing classification precision by refining impact categories, making it particularly valuable for projects constrained by time and resources.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!