PTH/SDF-1α cotherapy promotes proliferation, migration and osteogenic differentiation of human periodontal ligament stem cells.

Cell Prolif

Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, China.

Published: October 2016

Objectives: Stromal cell-derived factor-1α (SDF-1α) plays an important role in tissue regeneration in various tissues including the periodontium. A potential limitation for its use derives from its sensitivity to cleavage by dipeptidyl peptidase-IV (DPP-IV). Parathyroid hormone (PTH) reduces enzymatic activity of DPP-IV and is suggested to be a promising agent for periodontal tissue repair. The purpose of this study was to provide insight into how SDF-1α and intermittent PTH treatment might affect proliferation, migration and osteogenic differentiation of human periodontal ligament stem cells (PDLSCs) in vitro.

Materials And Methods: PDLSCs were isolated by the limiting dilution method. Surface markers were quantified by flow cytometry. Cell-counting kit-8 (CCK8), cell migration assay, alkaline phosphatase (ALP) activity assay, alizarin red staining and RT-PCR were used to determine viability, migration and osteogenic differentiation of PDLSCs.

Results: PDLSCs were positive for CD44, CD73, CD90, CD105, CD166 and STRO-1 and negative for CD14, CD34 and CD45. PTH/SDF-1α cotherapy significantly promoted cell proliferation, chemotactic capability, ALP activity and mineral deposition (P<.05). Gene expression level of bone sialoprotein (BSP), runt-related transcription factor 2 (Runx2) and osteocalcin (OCN) were all up-regulated (P<.05).

Conclusions: PTH/SDF-1α cotherapy promoted proliferation, migration and osteogenic differentiation of PDLSCs in vitro. Cotherapy seemed to have potential to promote periodontal tissue regeneration by facilitating chemotaxis of PDLSCs to the injured site, followed by promoting proliferation and osteogenic differentiation of these cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6496697PMC
http://dx.doi.org/10.1111/cpr.12286DOI Listing

Publication Analysis

Top Keywords

migration osteogenic
12
osteogenic differentiation
12
pth/sdf-1α cotherapy
8
proliferation migration
8
differentiation human
8
human periodontal
8
periodontal ligament
8
ligament stem
8
stem cells
8
alp activity
8

Similar Publications

Background/purpose: Revascularization procedures are used over apexification to treat teeth with necrotic pulp tissues and incomplete root formation. Clinically, inducing proliferation, migration, matrix deposition, and differentiation of stem cells from apical papilla (SCAPs) are critical for pulp regeneration. The study aimed to elucidate the impact of bone morphogenetic protein-4 (BMP-4) on plasminogen activation molecules and the osteogenic/odontogenic differentiation of SCAPs, as well as understand the related signaling mechanisms.

View Article and Find Full Text PDF

Background: Adipose-derived stem cell (ADSC) transplantation presents a promising approach for osteoporosis (OP) treatment. However, the therapeutic efficacy of ADSCs is hindered by low post-transplantation survival rates and limited capacities for adhesion, migration, and differentiation. Icariin (ICA), the primary active compound of Epimedium, has been shown to promote cell proliferation and induce osteogenic differentiation; however, its specific effects on ADSC osteogenesis and the mechanisms by which ICA enhances osteoporosis treatment through cell transplantation remain inadequately understood.

View Article and Find Full Text PDF

Aspirin Inhibits the In Vitro Adipogenic Differentiation of Human Adipose Tissue-Derived Stem Cells in a Dose-Dependent Manner.

Int J Mol Sci

January 2025

Division of Hand Surgery, Plastic Surgery and Aesthetic Surgery, University Hospital, LMU Munich, Ziemssenstraße 5, 80336 Munich, Germany.

Aspirin (ASA) is one of the most used medications worldwide and has shown various effects on cellular processes, including stem cell differentiation. However, the effect of ASA on adipogenesis of adipose tissue-derived stem cells (ASCs) remains largely unknown. Considering the potential application of ASCs in regenerative medicine and cell-based therapies, this study investigates the effects of ASA on adipogenic differentiation in human ASCs.

View Article and Find Full Text PDF

Hyaluronic acid (HA) has received considerable attention in the reconstruction of lost periodontal tissues. HA has been proposed to play a role in cell proliferation, differentiation, migration, and cell-matrix as well as cell-cell interactions. Although various studies have been conducted, further research is needed to expand our knowledge based on HA such as its effects on cell proliferation and osteogenic differentiation.

View Article and Find Full Text PDF

In this study, we explored the impact of different biomechanical loadings on lumbar spine motion segments, particularly concerning intervertebral disc degeneration (IVDD). We aimed to uncover the cellular milieu and mechanisms driving ossification in the nucleus pulposus (NP) during IVDD, a process whose underlying mechanisms have remained elusive. The study involved the examination of fresh NP tissue from the L3-S1 segment of five individuals, either with IVDD or healthy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!