A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Role of the peritoneal cavity in the prevention of postoperative adhesions, pain, and fatigue. | LitMetric

Role of the peritoneal cavity in the prevention of postoperative adhesions, pain, and fatigue.

Fertil Steril

Department of Operative Gynecology, Federal State Budget Institution V. I. Kulakov Research Center for Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia; Department of Reproductive Medicine and Surgery, Moscow State University of Medicine and Dentistry, Moscow, Russia, Russian Federation.

Published: October 2016

A surgical trauma results within minutes in exudation, platelets, and fibrin deposition. Within hours, the denuded area is covered by tissue repair cells/macrophages, starting a cascade of events. Epithelial repair starts on day 1 and is terminated by day 3. If repair is delayed by decreased fibrinolysis, local inflammation, or factors in peritoneal fluid, fibroblast growth starting on day 3 and angiogenesis starting on day 5 results in adhesion formation. For adhesion formation, quantitatively more important are factors released into the peritoneal fluid after retraction of the fragile mesothelial cells and acute inflammation of the entire peritoneal cavity. This is caused by mechanical trauma, hypoxia (e.g., CO pneumoperitoneum), reactive oxygen species (ROS; e.g., open surgery), desiccation, or presence of blood, and this is more severe at higher temperatures. The inflammation at trauma sites is delayed by necrotic tissue, resorbable sutures, vascularization damage, and oxidative stress. Prevention of adhesion formation therefore consists of the prevention of acute inflammation in the peritoneal cavity by means of gentle tissue handling, the addition of more than 5% NO to the CO pneumoperitoneum, cooling the abdomen to 30°C, prevention of desiccation, a short duration of surgery, and, at the end of surgery, meticulous hemostasis, thorough lavage, application of a barrier to injury sites, and administration of dexamethasone. With this combined therapy, nearly adhesion-free surgery can be performed today. Conditioning alone results in some 85% adhesion prevention, barriers alone in 40%-50%.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fertnstert.2016.08.012DOI Listing

Publication Analysis

Top Keywords

peritoneal cavity
12
adhesion formation
12
peritoneal fluid
8
starting day
8
acute inflammation
8
prevention
5
role peritoneal
4
cavity prevention
4
prevention postoperative
4
postoperative adhesions
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!