Objective: Candida albicans is the primary causative agent of oral candidosis, and one of its key virulent attributes is considered to be its ability to produce extracellular phospholipases that facilitate cellular invasion. Oral candidosis can be treated with polyenes, and azoles, and the more recently introduced echinocandins. However, once administered, the intraoral concentration of these drugs tend to be sub-therapeutic and rather transient due to factors such as the diluent effect of saliva and cleansing effect of the oral musculature. Hence, intra-orally, the pathogenic yeasts may undergo a brief exposure to antifungal drugs. We, therefore, evaluated the phospholipase production of oral C. albicans isolates following brief exposure to sub-therapeutic concentrations of the foregoing antifungals.
Materials And Methods: Fifty C. albicans oral isolates obtained from smokers, diabetics, asthmatics using steroid inhalers, partial denture wearers and healthy individuals were exposed to sub-therapeutic concentrations of nystatin, amphotericin B, caspofungin, ketoconazole and fluconazole for one hour. Thereafter the drugs were removed and the phospholipase production was determined by a plate assay using an egg yolk-agar medium.
Results: The phospholipase production of these isolates was significantly suppressed with a percentage reduction of 10.65, 12.14, 11.45 and 6.40% following exposure to nystatin, amphotericin B, caspofungin and ketoconazole, respectively. This suppression was not significant following exposure to fluconazole.
Conclusions: Despite the sub-therapeutic, intra oral, bioavailability of polyenes, echinocandins and ketoconazole, they are likely to produce a persistent antifungal effect by suppressing phospholipase production, which is a key virulent attribute of this common pathogenic yeast.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5052368 | PMC |
http://dx.doi.org/10.1016/j.bjm.2016.06.009 | DOI Listing |
Microorganisms
January 2025
Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China.
NupR is a nucleoside permease regulator belonging to the GntR family, mainly regulating nucleoside transport in . A conserved binding site for NupR was found in the promoter region of . This study aimed to investigate the regulation of the virulence regulator PlcR by NupR and its impact on Bt virulence.
View Article and Find Full Text PDFJ Fungi (Basel)
January 2025
Kashkin Research Institute of Medical Mycology, North-Western State Medical University Named after I.I. Mechnikov, 191015 Saint Petersburg, Russia.
is an emerging multidrug-resistant fungal pathogen causing nosocomial transmission and invasive infections with high mortality. This study aimed to investigate the genetic relationships, enzymatic activities, and drug-resistance profiles of isolates to evaluate the population and epidemiological diversity of candidiasis in Russia. A total of 112 clinical isolates of were analyzed from May 2017 to March 2023 in 18 hospitals across Saint Petersburg, the Leningrad Region, and Moscow.
View Article and Find Full Text PDFGigascience
January 2025
Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China.
Background: Drought is a major limiting factor for plant survival and crop productivity. Stylosanthes angustifolia, a pioneer plant, exhibits remarkable drought tolerance, yet the molecular mechanisms driving its drought resistance remain largely unexplored.
Results: We present a chromosome-scale reference genome of S.
Toxicon
January 2025
Venom and Biotherapeutics Molecules Lab., Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran. Electronic address:
Scorpion envenomation, especially from Hemiscorpius lepturus, poses a significant health risk, leading to considerable morbidity and mortality. The venom's major toxin, which includes phospholipase D (PLD), is responsible for various systemic complications. In prior studies, we identified a native phospholipase D (PLD) toxin as a key lethal factor in the venom of H.
View Article and Find Full Text PDFJ Hepatol
January 2025
Department of Biomedicine, University of Basel, Switzerland; University Centre for Gastrointestinal and Liver Disease Basel, Switzerland. Electronic address:
Background & Aims: Infectious complications determine the prognosis of cirrhosis patients. Their infection susceptibility relates to the development of immuneparesis, a complex interplay of different immunosuppressive cells and soluble factors. Mechanisms underlying the dynamics of immuneparesis of innate immunity remain inconclusive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!