Background: Expert systems can help alleviate problems related to the shortage of human resources in critical care, offering expert advice in complex situations. Expert systems use contextual information to provide advice to staff. In mechanical ventilation, it is crucial for an expert system to be able to determine the ventilatory mode in use. Different manufacturers have assigned different names to similar or even identical ventilatory modes so an expert system should be able to detect the ventilatory mode. The aim of this study is to evaluate the accuracy of an algorithm to detect the ventilatory mode in use.
Methods: We compared the results of a two-step algorithm designed to identify seven ventilatory modes. The algorithm was built into a software platform (BetterCare® system, Better Care SL; Barcelona, Spain) that acquires ventilatory signals through the data port of mechanical ventilators. The sample analyzed compared data from consecutive adult patients who underwent >24 h of mechanical ventilation in intensive care units (ICUs) at two hospitals. We used Cohen's kappa statistics to analyze the agreement between the results obtained with the algorithm and those recorded by ICU staff.
Results: We analyzed 486 records from 73 patients. The algorithm correctly labeled the ventilatory mode in 433 (89 %). We found an unweighted Cohen's kappa index of 84.5 % [CI (95 %) = (80.5 %: 88.4 %)].
Conclusions: The computerized algorithm can reliably identify ventilatory mode.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4983761 | PMC |
http://dx.doi.org/10.1186/s13054-016-1436-9 | DOI Listing |
Med Intensiva (Engl Ed)
January 2025
Pulmonology Department, Hospital General Universitario Morales Meseguer, Murcia, Spain.
Objective: The purpose of this study was to analyze the differences in the effectiveness and complications of CPAP versus non-invasive ventilation on bilevel positive airway pressure (BiPAP) in the treatment of COVID-19 associated acute respiratory failure (ARF).
Design: Retrospective observational study.
Setting: ICU.
J Clin Monit Comput
January 2025
IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano - Milan, 20089, Italy.
Fluids are given with the purpose of increasing cardiac output (CO), but approximately only 50% of critically ill patients are fluid responders. Since the effect of a fluid bolus is time-sensitive, it diminuish within few hours, following the initial fluid resuscitation. Several functional hemodynamic tests (FHTs), consisting of maneuvers affecting heart-lung interactions, have been conceived to discriminate fluid responders from non-responders.
View Article and Find Full Text PDFCrit Care
January 2025
Departamento de Medicina, Hospital Clínico Universidad de Chile, Unidad de Pacientes Críticos, Dr. Carlos Lorca Tobar 999, Independencia, Santiago, Chile.
Background: Double cycling with breath-stacking (DC/BS) during controlled mechanical ventilation is considered potentially injurious, reflecting a high respiratory drive. During partial ventilatory support, its occurrence might be attributable to physiological variability of breathing patterns, reflecting the response of the mode without carrying specific risks.
Methods: This secondary analysis of a crossover study evaluated DC/BS events in hypoxemic patients resuming spontaneous breathing in cross-over under neurally adjusted ventilatory assist (NAVA), proportional assist ventilation (PAV +), and pressure support ventilation (PSV).
Andes Pediatr
August 2024
Facultad de Salud, Universidad Santiago de Cali, Cali, Colombia.
Unlabelled: High-frequency oscillatory ventilation with volume guarantee (HFOV-VG) is a ventilatory mode that controls small tidal volumes at supraphysiological frequencies, potentially beneficial for preterm infants with respiratory distress syndrome (RDS).
Objective: To identify the physiological and clinical effects of HFOV-VG in preterm newborns with RDS, compared with conventional HFOV.
Method: Exploratory review of studies published between 2019 and 2023 of preterm newborns from 23 to 36 weeks of gestation with RDS, weighing ≥ 450g, with invasive HFOV support, using PRISMA flow diagram.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!