Non-lethal biological techniques such as blood biomarkers have gained attention due to their value as early signals of anthropic effects of contamination representing significant tools to evaluate ecosystems health. We evaluate and characterize in situ genotoxicity of water samples collected from aquatic ecosystems around a fluorite mine using amphibian frogs Hypsiboas cordobae as bioindicator species complemented with 16 physicochemical parameters. Four stations associated with fluorite mine sampling were sampled: a stream running on granitic rock with natural high fluorite content; two streams both running on metamorphic rock with low fluorite content; and an artificial decantation pond containing sediments produced by fluorite flotation process with high variation in physicochemical parameters. We analyses the blood of tadpoles and adults of H. Cordobae, calculated frequencies of micronuclei, erythrocyte nuclear abnormalities, mitosis, immature and enucleated erythrocytes. Individuals were measured and weighed and body condition was calculated. The results of this study indicate that individuals of decantation pond are exposed to compounds or mixtures which are causing cell damage when compared to those that were collected of stream. Larval stage was more vulnerable than the adult phase and it could be related mainly to the higher exposure time to xenobiotics, which can penetrate easily by skin, mouth and gills; additionally this site offers a reduced availability of food than other sites. Therefore, chronic exposure to pollutants could derive in degenerative and neoplastic diseases in target organs. Moreover these individuals may experience reproductive and behavioral disturbances which could lead to population decline in the long term.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2016.08.003 | DOI Listing |
J Hazard Mater
December 2024
Department of Botany, GDC, Pulwama 192301, Jammu and Kashmir, India.
J Environ Manage
September 2024
School of Resources and Safety Engineering, Central South University, Changsha, 410083, China. Electronic address:
Phosphogypsum (PG) cemented paste backfill (CPB) is a primary non-hazardous method for treating PG. However, using traditional binders like cement increases global carbon emissions and mining operational costs while complicating the reduction of fluoride leaching risks. This study introduces a novel PG-based CPB treatment method using steel slag (SS) and ground granulated blast furnace slag (GGBFS) as binders, calcium oxide as an exciter, with biochar serving as a fluoride-fixing agent.
View Article and Find Full Text PDFEnviron Pollut
November 2024
Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems and Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Fujian 361102, China.
Fluorochemical industry is an emerging industry leading to environmental emissions of fluoride ion, fluorinated greenhouse gases (GHGs) and per- and polyfluoroalkyl substances (PFASs) globally. Chlorofluorocarbon (CFCs) and hydrochlorofluorocarbon (HCFCs) are the primary causes of ozone layer depletion, and together with hydrofluorocarbons (HFCs), they contribute to global climate warming. PFAS are emerging persistent organic pollutants, comprising thousands of materials including perfluoroalkyl acids (PFAAs), perfluoroalkane sulfonamides (FASAs), and fluoropolymers.
View Article and Find Full Text PDFEcotoxicol Environ Saf
September 2024
National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China. Electronic address:
Tea tree is a fluorine (F)-enriched plant, leading to much concern about the safety of drinking tea from tea tree (Camellia sinensis (L.) Kuntze). Tea tree is a perennial leaf-harvested crop, and tea production in China is generally categorized as spring tea, summer tea and autumn tea in its annual growth rounds.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
October 2024
Department of Petroleum Engineering, School of Energy Technology, Pandit Deendayal Energy University, Gandhinagar, 382426, Gujarat, India.
This work addresses the long-standing debate surrounding the origin of color variation in fluorite (CaF) through a novel quantitative approach. By examining eight carefully selected fluorite samples having different hue of colors from the Amba Dongar mine in Gujarat, India, a rigorous quantitative analysis was conducted. This approach combined chemical compositional data and optical spectroscopic features to elucidate the relationship between elemental composition, concentration, and color variation in fluorite.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!