N-nitrosodimethylamine (NDMA) is a disinfection byproduct preferentially formed in chloraminated water. NDMA may be formed from certain chemicals containing dimethylamine (DMA) functional groups. This reaction may be slowed by the presence of natural organic matter (NOM). In this study, NOM fractionated by size or polarity was tested for its ability to slow or impede the formation of NDMA from two DMA-containing precursors, the antibiotics tetracycline and spiramycin. The high molecular weight NOM fractions (>10KDa) were shown to be the most effective in reducing the amount of NDMA formed from the precursor chemicals. The filtrate of a C-18 non-polar cartridge was also effective at reducing NDMA formation from tetracycline (spyramycin not tested). Therefore, polar and charged NOM components may be responsible for the reduction in NDMA formation. A possible mechanism for the reduction of NDMA formation from tetracycline is complexation due to the hydrogen bonding of the DMA functional group on tetracycline to polar phenolic functional groups in the NOM.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2016.08.041 | DOI Listing |
J Environ Manage
December 2024
State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
Photocatalysis is an effective method for removing tetracycline antibiotics, which are important precursors to the potential carcinogen N-nitrosodimethylamine (NDMA). Herein, a BiOCl/ZnInS heterojunction was successfully synthesized using a simple hydrothermal method. This heterojunction was applied for the first time to degrade various tetracycline antibiotics and reduce NDMA formation potential (NDMA-FP) under visible-light irradiation.
View Article and Find Full Text PDFWater Res
November 2024
Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095, China. Electronic address:
Sulfate radical (SO) advanced oxidation processes (SR-AOPs) are efficient for degrading a broad spectrum of contaminants. This study demonstrates that the existence of environmentally relevant concentrations of nitrite (NO) can lead to the formation of N-nitrosodimethylamine (NDMA), a probable human carcinogen, when heat activated peroxydisulfate (heat/PDS) is applied to address contaminants with dimethylamine moieties, such as tetracyclines. NO effectively competes with tetracyclines for SO at a high second-order reaction rate constant of 8.
View Article and Find Full Text PDFJ Pharm Sci
November 2024
United States Pharmacopeia India Pvt Ltd, Hyderabad, Telangana, India.
Nitrosamine impurities have been classified as probable human carcinogens for decades. These impurities were reported in water, food, tobacco, pesticides, and plastics but received attention in mid-2018 when N-nitrosodimethylamine (NDMA) was reported in valsartan drug products. Subsequently, it was revealed that several small molecule and complex nitrosamine impurities can form in any active pharmaceutical ingredient (API) or drug product in which secondary or tertiary amines are present (as API or as impurities) along with a nitrosating agent.
View Article and Find Full Text PDFEnviron Pollut
December 2024
Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China. Electronic address:
Environmental carcinogens such as N-nitrosamines are high-risk factors for the development of esophageal cancer (EC). However, the association between nitrosamines exposure and lipid metabolism disorders in human EC remained largely obscure. Therefore, we conducted a population-based case-control study established with esophageal inflammation (BCH), esophageal heterotrophic hyperplasia (DYS), patients with primary EC and matched controls in high prevalence area of EC in China.
View Article and Find Full Text PDFBiomed Chromatogr
January 2025
Office of Pharmaceutical Quality Research, Center for Drug Evaluation and Research Food and Drug Administration, Silver Spring, Maryland, USA.
Pharmaceutical manufacturers are working to mitigate the formation of nitrosamine impurities in drug products. The work herein describes the development and validation of a headspace GC-MS method according to ICH Q2(R1) guidelines for the detection and quantification of NDMA, NDEA, NDIPA, and NEIPA in drug products. The analytical procedure was further modified to include detection and quantitation of DMF due to the potential decomposition pathway of DMF to form dimethylamine, a known precursor for NDMA formation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!