Ex vivo and in vivo characterization of cold preserved cartilage for cell transplantation.

Cell Tissue Bank

Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, 110 Intavaroros Road, Sripoom, Muang, Chiang Mai, 50200, Thailand.

Published: December 2016

Due to the inconvenient and invasive nature of chondrocyte transplantation, preserved cartilage has been recognized as an alternative source of chondrocytes for implantation. However, there are major concerns, in particular, the viability and quality of the chondrocytes. This study investigated the biochemistry and molecular characterization of chondrocytes isolated from preserved cartilage for purposes of transplantation. Ex vivo characterization was accomplished by storing human cartilage at either 4 or -80 °C in a preservation medium. Microscopic evaluation of the preserved cartilage was conducted after 1, 2, 3 and 6 weeks. The chondrocytes were isolated from the preserved cartilage and investigated for proliferation capacity and chondrogenic phenotype. Transplantation of chondrocytes from preserved cartilage into rabbit knees was performed for purposes of in vivo evaluation. The serum cartilage degradation biomarker (WF6 epitopes) was evaluated during the transplantation procedure. Human cartilage preserved for 1 week in a 10 % DMSO chondrogenic medium at 4 °C gave the highest chondrocyte viability. The isolated chondrocytes showed a high proliferative capacity and retained chondrogenic gene expression. Microscopic assessment of the implanted rabbit knees showed tissue regeneration and integration with the host cartilage. A decreased level of the serum biomarker after transplantation was evidence of in vivo repair by the implanted chondrocytes. These results suggest that cartilage preservation for 1 week in a 10 % DMSO chondrogenic medium at 4 °C can maintain proliferation capacity and the chondrogenic phenotype of human chondrocytes. These results can potentially be applied to in vivo allogeneic chondrocyte transplantation. Allogeneic chondrocytes from preserved cartilage would be expected to maintain their chondrogenic phenotype and to result in a high rate of success in transplanted grafts.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10561-016-9577-2DOI Listing

Publication Analysis

Top Keywords

preserved cartilage
28
cartilage
12
chondrogenic phenotype
12
chondrocytes
9
vivo characterization
8
preserved
8
chondrocyte transplantation
8
chondrocytes isolated
8
isolated preserved
8
human cartilage
8

Similar Publications

Osteochondritis dissecans is a rare condition characterized by the deterioration of a small area of bone and cartilage without infection. Its exact cause is unclear, though factors such as abnormal bone development, joint pressure, repetitive injuries, inadequate blood supply, and genetic links have been observed. In this case, a 27-year-old woman experienced chronic right knee pain following a twisting injury, which led to reduced mobility and mild pain.

View Article and Find Full Text PDF

Biofabrication of anisotropic articular cartilage based on decellularized extracellular matrix.

Biofabrication

January 2025

Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland.

Tissue-engineered grafts that mimic articular cartilage show promise for treating cartilage injuries. However, engineering cartilage cell-based therapies to match zonal architecture and biochemical composition remains challenging. Decellularized articular cartilage extracellular matrix (dECM) has gained attention for its chondro-inductive properties, yet dECM-based bioinks have limitations in mechanical stability and printability.

View Article and Find Full Text PDF

Osteotomies around the knee have a variety of indications, including pain reduction, functional improvement, knee joint stabilization, and articular cartilage preservation. Thorough preoperative planning is essential, including a determination of the precise location of any deformity (proximal tibia, distal femur, or both). High tibial osteotomies and distal femoral osteotomies can be performed in isolation, or jointly in the form of a double-level osteotomy, for correction of coronal and/or sagittal deformity of the knee.

View Article and Find Full Text PDF

Purpose: Sulcus-deepening trochleoplasty (TP) effectively treats patellofemoral (PF) instability (PFI) caused by high-grade trochlear dysplasia (TD), but current evidence is based on small case series. We hypothesised, that TP would result in significant functional improvements and a low re-dislocation rate but would not accelerate the progression of PF cartilage deterioration.

Methods: We retrospectively reviewed all TP cases performed by a single surgeon between 2015 and 2021.

View Article and Find Full Text PDF

Objectives: This study was to evaluate the radiological and clinical outcomes of patients with juxta-articular giant-cell tumors (GCTs) around the knee treated with bone cement filling and internal fixation after extensive curettage.

Patients And Methods: A total of 15 patients (6 males, 9 females; mean age: 35.3±8.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!