The present study evaluates the PCB-dehalorespiring capabilities and dynamics of indigenous Dehalococcoides mccartyi population in a PCB contaminated marine sediment. Specialized PCB-dechlorinase genes pcbA1, pcbA4 and pcbA5 previously characterized in pure cultures of D. mccartyi, were here found for the first time in environmental samples. Reductive dechlorination was stimulated by spiking Aroclor1254 to the sediment and by imposing strictly anaerobic conditions both with and without bioaugmentation with a Dehalococcoides mccartyi enrichment culture. In line with the contaminant dechlorination kinetics, Dehalococcoides population increased during the entire incubation period showing growth yields of 4.94E+07 Dehalococcoides per μmolCl and 7.30E+05 Dehalococcoides per μmolCl in the marine sediment with and without bioaugmentation respectively. The pcbA4 and pcbA5 dechlorinase genes, and to a lesser extent pcbA1 gene, were enriched during the anaerobic incubation suggesting their role in Aroclor1254 dechlorination under salinity conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.marpolbul.2016.08.021 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!