Characterization and functional analysis of a novel glutathione S-transferase gene potentially associated with the abamectin resistance in Panonychus citri (McGregor).

Pestic Biochem Physiol

Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, People's Republic of China. Electronic address:

Published: September 2016

The citrus red mite, Panonychus citri (McGregor), a major citrus pest distributed worldwide, has been found to be resistant to various insecticides and acaricides used in China. However, the molecular mechanisms associated with the abamectin resistance in this species have not yet been reported. In this study, results showed over-expression of a novel glutathione S-transferases (GSTs) gene (PcGSTm5) in abamectin-resistant P. citri. Quantitative real-time PCR analysis showed that the transcripts of PcGSTm5 were also significantly up-regulated after exposure to abamectin and the maximum mRNA expression level at nymphal stage. The recombinant protein of PcGSTm5-pET-28a produced by Escherichia coli showed a pronounced activity toward the conjugates of 1-chloro-2,4 dinitrobenzene (CDNB) and glutathione (GSH). The kinetics of CDNB and GSH and its optimal pH and thermal stability were also determined. Reverse genetic study through a new method of leaf-mediated dsRNA feeding further support a link between the expression of PcGSTm5 and abamectin resistance. However, no direct evidence was found in metabolism or inhibition assays to confirm the hypothesis that PcGSTm5 can metabolize abamectin. Finally, it is here speculated that PcGSTm5 may play a role in abamectin detoxification through other pathway such as the antioxidant protection.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pestbp.2015.11.002DOI Listing

Publication Analysis

Top Keywords

abamectin resistance
12
novel glutathione
8
associated abamectin
8
panonychus citri
8
citri mcgregor
8
abamectin
6
pcgstm5
5
characterization functional
4
functional analysis
4
analysis novel
4

Similar Publications

Western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae) is an invasive agricultural pest with developed resistance to abamectin in some strains due to frequent treatment with the pesticide. In this study, we examined differentially expressed proteins (DEPs) between abamectin-resistant (Aba; under abamectin selective pressure) and susceptible strains (Aba; without abamectin selective pressure) of F. occidentalis.

View Article and Find Full Text PDF

Broad-spectrum crop protection technologies, such as abamectin and bifenthrin, are globally relied upon to curb the existential threats from economic crop pests such as the generalist herbivore Koch (TSSM). However, the rising cost of discovering and registering new acaricides, particularly for specialty crops, along with the increasing risk of pesticide resistance development, underscores the urgent need to preserve the efficacy of currently registered acaricides. This study examined the overall genetic mechanism underlying adaptation to abamectin and bifenthrin in populations from commercial hop fields in the Pacific Northwestern region of the USA.

View Article and Find Full Text PDF

Control of the sheep blowfly relies on insecticides, however resistance is currently impacting on their efficacy. The use of insecticides in combination (mixtures) is considered to be a useful strategy to delay resistance under some circumstances. The present study aimed to examine the combination of spinosad with macrocyclic lactones in order to determine if the two drug classes showed any interactions that would impact on the usefulness of a combination product for flystrike control.

View Article and Find Full Text PDF

Background: The rice stem borer, Chilo suppressalis Walker (Lepidoptera: Crambidae), is a damaging pest of rice worldwide. Following the evolution of C. suppressalis resistance to diamide and abamectin insecticides, emamectin benzoate (EB) became a key insecticide for the control of this species in China.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the role of two specific genes (PxFMO2 and SeCYP9A186) in insecticide resistance in the diamondback moth (Plutella xylostella) by using transgenic technology.
  • Two transgenic strains were created: one expressing PxFMO2 showed significant resistance to certain pesticides (12-fold for emamectin benzoate), while the strain with SeCYP9A186 exhibited even greater resistance (235-fold).
  • The findings highlight how these genes contribute to resistance and offer potential tools for genetic manipulation to improve pest management strategies.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!