A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Validated Finite Element Analysis of Facet Joint Stress in Degenerative Lumbar Scoliosis. | LitMetric

Objective: To develop modified finite element models to simulate degenerative lumbar scoliosis (DLS) based on the normal lumbar spine model and to investigate the facet joint force of the DLS.

Methods: A 3-dimensional finite element model of a normal lumbar spine was modified to simulate 3 different Cobb angles conditions (12.3°, 22.2°, and 31.8°). The stresses on the facet joint were calculated on both sides (right and left) of the each vertebra. Changes of stress and asymmetry in contact forces between facet joints in the development of DLS were quantitatively analyzed to better understand the development of DLS and the biomechanical forming mechanism.

Results: The results show that asymmetric responses of the facet joint forces exist in various postures and that such effect is amplified with larger curve. When the Cobb angle was smaller, the convex side of the facet joints suffered larger force. When the Cobb angle was larger than 20°, the concave side of the facet joints suffered larger force. In the axial-rotation cases, the facet joint compression is less often located on the ipsilateral side than the contralateral side at the same level.

Conclusions: With the asymmetric loading, facet joints compressive deformation appears on the concave side, and it decreases in the effect of the facet joints to limit the vertebral rotation and listhesis. Asymmetric loading on facet joint contact forces accelerates asymmetry in the lumbar spine.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.wneu.2016.07.106DOI Listing

Publication Analysis

Top Keywords

facet joint
24
facet joints
20
finite element
12
lumbar spine
12
facet
11
degenerative lumbar
8
lumbar scoliosis
8
normal lumbar
8
contact forces
8
development dls
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!