Air pollution is a serious environmental health problem that has been previously associated with neuropathological disorders. However, current experimental evidence mainly focuses on the adverse effects of a single air pollutant, ignoring the biological responses to the co-existence of these pollutants. In the present study, we co-exposed C57BL/6 J mice to PM2.5, SO2 and NO2 and explored their neurobehavior, histopathologic abnormalities, apoptosis-related protein expression and mitochondrial dysfunction. The results indicate that co-exposure to PM2.5, SO2 and NO2 impaired spatial learning and memory and caused abnormal expression of apoptosis-related genes (p53, bax and bcl-2). Additionally, these alterations were related to morphological changes in mitochondria, a reduction of ATP, the elevation of mitochondrial fission proteins and the downregulation of fusion proteins. These findings provide a basis for the understanding of mitochondrial abnormality-related neuropathological dysfunction in response to co-exposure to ambient air pollutants, which suggests an adaptive response to the frangibility of the central nerve system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2016.08.009 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!