In the plant kingdom, the plasma membrane intrinsic aquaporins (PIPs) constitute a highly conserved group of water channels with the capacity of rapidly adjusting the water permeability (P) of a cell by a gating response. Most evidence regarding this mechanism was obtained by different biophysical approaches including the crystallization of a Spinaca olaracea PIP2 aquaporin (SoPIP2;1) in an open and close conformation. A close state seems to prevail under certain stimuli such as cytosolic pH decrease, intracellular Ca concentration increase and dephosphorylation of specific serines. In this work we decided to address whether the state of phosphorylation of a loop B serine - highly conserved in all PIPs - combined with cytosolic acidification can jointly affect the gating response. To achieve this goal we generated loop B serine mutants of two PIP types of Fragaria×ananassa (FaPIP2;1S121A and FaPIP1;1S131A) in order to simulate a dephosphorylated state and characterize their behavior in terms of P and pH sensitivities. The response was tested for different co-expressions of PIPs (homo and heterotetramers combining wild-type and mutant PIPs) in Xenopus oocytes. Our results show that loop B serine phosphorylation status affects pH gating of FaPIP2;1 but not of FaPIP1;1 by changing its sensitivity to more alkaline pHs. Therefore, we propose that a counterpoint of different regulatory mechanisms - heterotetramerization, serine phosphorylation status and pH sensitivity - affect aquaporin gating thus ruling the P of a membrane that expresses PIPs when fast responses are mandatory.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbamem.2016.08.002 | DOI Listing |
J Thromb Haemost
January 2025
Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom; Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom. Electronic address:
Background: The thromboxane A2 receptor (TPαR) plays an important role in the amplification of platelet responses during thrombosis. Receptor activity is regulated by internalization and receptor desensitization. The mechanism by which constitutive surface expression of the TPαR is regulated is unknown.
View Article and Find Full Text PDFJ Biol Chem
January 2025
Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA; Department of Oncology, Division of Oncology Research, Mayo Clinic, Rochester, MN, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA. Electronic address:
The host-range mutant of rabbitpox virus (RPXV) with a deletion in the gene encoding the serpin serine protease inhibitor 1 (SPI-1) fails to replicate efficiently in restrictive host cells. Depletion of the host cell serine protease FAM111A restores viral replication in these cells, suggesting that SPI-1 targets FAM111A to facilitate infection. However, direct evidence of SPI-1 inhibiting FAM111A has been lacking.
View Article and Find Full Text PDFNat Commun
January 2025
The Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200233, China.
Balanced self-renewal and differentiation of stem cells are crucial for maintaining tissue homeostasis, but the underlying mechanisms of this process remain poorly understood. Here, from an RNA interference (RNAi) screen in adult Drosophila intestinal stem cells (ISCs), we identify a factor, Pax, which is orthologous to mammalian PXN, coordinates the proliferation and differentiation of ISCs during both normal homeostasis and injury-induced midgut regeneration in Drosophila. Loss of Pax promotes ISC proliferation while suppressing its differentiation into absorptive enterocytes (ECs).
View Article and Find Full Text PDFFEBS J
January 2025
Physics, Department of Molecular and Translational Medicine, University of Brescia, Italy.
Neutrophil elastase (NE) is released by activated neutrophils during an inflammatory response and exerts proteolytic activity on elastin and other extracellular matrix components. This protease is rapidly inhibited by the plasma serine protease inhibitor alpha-1-antitrypsin (AAT), and the importance of this protective activity on lung tissue is highlighted by the development of early onset emphysema in individuals with AAT deficiency. As a serpin, AAT presents a surface-exposed reactive centre loop (RCL) whose sequence mirrors the target protease specificity.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Biochemistry, Brandeis University, Waltham, MA 02454.
Reversible protein phosphorylation directs essential cellular processes including cell division, cell growth, cell death, inflammation, and differentiation. Because protein phosphorylation drives diverse diseases, kinases and phosphatases have been targets for drug discovery, with some achieving remarkable clinical success. Most protein kinases are activated by phosphorylation of their activation loops, which shifts the conformational equilibrium of the kinase toward the active state.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!